University of Rajasthan
Jaipur

SYLLABUS

M.Sc. ZOOLOGY

(Annual Scheme)

M.Sc. (Previous) Examination 2021
M.Sc. (Final) Examination 2022

Registrar (Acad.)
3. Molecular perspective on the conservation of diversity
 3.1 Diversity and ecosystem process: Theory, achievements and future directions.

4. Dimensions of speciation and taxonomic characters
 4.1 Dimensions of speciation – Types of lineage changes; Production of additional lineage.
 4.2 Mechanisms of speciation, Speciation in panmictic and apomictic species.
 4.3 Species concepts and species category, Different species concepts: Subspecies and other infra-specific categories.
 4.4 Theories of biological classification: Hierarchy of categories.
 4.5 Taxonomic characters of different kinds, origin of reproductive isolation and biological mechanism of genetic incompatibility.

5. Procedure keys in taxonomy
 5.1 Taxonomic procedures: Taxonomic collections, preservation, correct process of identification.
 5.2 Taxonomic keys: Different kinds of taxonomic keys, their merits and demerits.
 5.3 Systematic publications and different kinds of publications.
 5.4 Process of Zoological types.
 5.5 International Code of Zoological Nomenclature (ICZN) and its operative principles, interpretation and application of important rules. Zoological nomenclature; formation of scientific names of various taxa.

6. Evaluation of biodiversity indices
 6.1 Shannon-Weinber index, dominance index.
 6.2 Similarity and dissimilarity index
 6.3 Association index

Recommended Books (All latest editions)

5. Tikadar, B.K., Threatened Animals of India, ZSI Publication, Calcutta.

\[\text{Dy. Registrar (Academic-I)}\]
\[\text{University of Rajasthan} \]
\[\text{Jaipur}\]
Paper II: STRUCTURE & FUNCTION OF INVERTEBRATES

3 Hours duration Max. Marks: 100 Periods: 80

1. Organization of Coelom
 1.1 Acoelomates
 1.2 Pseudocoelomates
 1.3 Coelomates: Protostomia and Deuterostomia.

2. Locomotion
 2.1 Flagellar and ciliary movement in Protozoa.
 2.2 Hydrostatic movement in Coelenterata, Annelida and Echinodermata.

3. Nutrition and Digestion
 3.1 Patterns of feeding and digestion in lower Metazoa.
 3.2 Filter feeding in Polychaeta, Mollusca and Echinodermata.

4. Respiration
 4.1 Organs of respiration: Gills, lungs and trachea.
 4.2 Respiratory pigments.
 4.3 Mechanism of respiration.

5. Excretion
 5.1 Organs of excretion: Coelom, Coelomoducts, Nephridia and Malpighian
tubules.
 5.2 Mechanisms of excretion.
 5.3 Excretion and osmoregulation.

6. Nervous system
 6.1 Primitive nervous system: Coelenterata and Echinodermata.
 6.2 Advanced Nervous system: Annelida, Arthropoda (Crustacea and Insecta) and
 Mollusca (Cephalopoda)
 6.3 Trends in neural evolution

7. Invertebrate larvae
 7.1 Larval forms of free-living invertebrates
 7.2 Larval forms of parasites
 7.3 Strategies and evolutionary significance of larval forms

8. Minor Phyla
 8.1 Concept and significance (Mesozoa, Ctenophora, Rhynococcoela, Protostomes,
 Deuterostomes)
 8.2 Organization and general characters.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
Recommended Books

PAPER III: MOLECULAR BIOLOGY & BIOTECHNOLOGY

Duration: 3 Hours Max. Marks: 100 Periods : 80
1. DNA
 1.1 Equivalence rule
 1.2 DNA structure : Primary & Secondary, Unusual secondary structures (slipped&cruciform, triple helix, tetraplex and G-quadriplex).
 1.3 Packaging of DNA: Nucleosome, solenoid & scaffold

2. DNA replication
 2.1 Prokaryotic and eukaryotic DNA replication
 2.2 Mechanics of DNA replication
 2.3 Enzymes and accessory proteins involved in DNA replication

3. Transcription
 3.1 Prokaryotic transcription
 3.2 Eukaryotic transcription
 3.3 RNA polymerases
 3.4 General and specific transcription factors
 3.5 Regulatory elements and mechanisms of transcription regulation

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
3.6 Transcription termination
3.7 Transcriptional and post-transcriptional gene splicing

4. Post-transcriptional modifications in RNA
 4.1 Cap formation
 4.2 End processing and polyadenylation
 4.3 Splicing, editing
 4.4 Nuclear export of mRNA.
 4.5 RNA stability

5. Translation
 5.1 Genetic code
 5.2 Prokaryotic and eukaryotic translation
 5.3 Translation machinery
 5.4 Mechanisms of initiation, elongation and termination
 5.5 Regulation of translation
 5.6 Co-and post-translation modifications of proteins.

6. Recombination and repair
 6.1 Holliday junction, gene targeting, gene disruption
 6.2 FLP/FRT and Crelox recombination
 6.3 RecA and other recombinases
 6.4 DNA repair mechanisms (Radiation damage, Direct reversal, Oxidative damage, Alkylaslon, Base excision repair, Nucleotide excision repair, Mismatch repair, ds break repair, SOS response, Translesion DNA system

7. Molecular mapping of genome
 7.1 Genetic and physical maps
 7.2 Physical mapping and mapbased cloning
 7.3 Southern and fluorescence, in-situ hybridization for genome analysis
 7.4 Molecular markers in genome analysis, RFLP, RAPD, AFLP,DNA finger prenting, single nucleotide polymorphism (SNPs), Sequence tagged site (STS)
 7.5 Application of RFLP and forensic disease prognosis, genetic counselling, pedigree varietal etc. Analysis, Animal tracking and poaching, germplasm maintenance and taxonomy.
8. Human Genome project, flap map project, the encode project

8.1 Production Recent Technologies of transgenic animals and Knock out and its applications

8.2 Embryonic stem cells and its applications

8.3 Care and breeding of experimental animals including bioethics

9. Embryo technology

9.1 Superovulation, cryopreservation of spermatazoa.

9.2 In Vitro fertilization and embryo transfer.

9.3 Embryo sexing and cloning

9.4 Chimera formation.

9.5 Gene transfer through embryo transgenesis.

9.6 Surrogacy and ethics.

9.7 Assisted Reproductive Technologies-ICSO, GIFT, ZIFT, TET

9.8 Prenatal diagnosis and genetic counselling.

Recommended Books

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
PAPER IV: GENERAL PHYSIOLOGY

Duration: 3 Hours
Max. Marks: 100
Periods: 80

1. Thermoregulation and Cold Tolerance
 1.1 Basic principles of metabolism
 1.2 Heat balance and exchange
 1.3 Endotherms Vs Ectotherms
 1.4 Counter-current heat exchanger
 1.5 Torpor, hibernation and aestivation
 1.6 Adaptations to very cold environments

2. Ionic and Osmotic Balance
 2.1 Osmoregulation vs. Osmoconfirming
 2.2 Osmoregulation in aquatic and terrestrial environments
 2.3 Kidney function and diversity
 2.4 Other osmoregulatory organs
 2.5 Nitrogenous waste excretion

3. Gas Exchange and Acid-base Balance
 3.1 Oxygen and carbon dioxide transport in blood
 3.2 Role of haemoglobin
 3.3 Responses to attitude and hypoxia
 3.4 Swim bladder inflation in fish
 3.5 Regulation of body pH
 3.6 Gas transfer in air and water, gas exchanger design and function

4. Muscle Function and Movement
 4.1 Anatomy of muscle
 4.2 Regulation of contraction
 4.3 Excitation-contraction coupling
 4.4 Molecular theory of muscle contraction

5. Nervous System
 5.1 Anatomy of nervous system
 5.2 Neurons and membrane excitation
 5.3 Electrochemical potentials
 5.4 Action potentials
5.5 Transmission between neurons
5.6 Synapses and neurotransmitters
5.7 Memory an learning

6. Sensory Transduction
6.1 Sensing the environment
6.2 Auditory receptors
6.3 Chemoreceptors, Taste and smell, homing in Salmon
6.4 Mechanoreceptors: Tactile systems and escape responses
6.5 Vision and photoreception
6.6 Thermoreception and infrared detection: Prey detection in snakes.
6.7 Echolocation and bats

7. Digestion and Metabolism
7.1 Nutritional uptake and distribution
7.2 Effects of starvation

8. Stress Biology
8.1 Basic concept of environmental stress and strain: concept of elastic and plastic strain; stress resistance, stress avoidance and stress tolerance.
8.2 Adaptation, acclimation and acclimatization
8.3 Concept of homeostasis
8.4 Physiological response to oxygen deficient stress
8.5 Physiological response to body exercise
8.6 Meditation, yoga and their effects

9. Endocrinology
9.1 Aims and scope of endocrinology
9.1.1 Discovery of hormones.
9.1.2 Hormones as messengers.
9.1.3 Classification of hormones
9.2 Phylogeny of endocrine glands (Pituitary, pancreas, adrenal, thyroid, testis, ovary)
9.3 Ontogeny of endocrine glands.
9.4 Neuroendocrine system and neurosecretion
9.5 General principles, structure and hormone action
9.6 Hormones, growth and development.
9.7 Hormones and reproduction.
Recommended Books

17. Williams, R.H., Text Book of Endocrinology, W.B. Saunders.
PAPER V: BIOCHEMISTRY

Duration: 3 Hours Max. Marks: 100

1. Covalent properties of Proteins
 1.1 Structure and chemistry of amino acids
 1.2 Protein sequencing
 1.3 Peptide synthesis
 1.4 Covalent modifications
 1.5 Protein size and composition
 1.6 Protein splicing

2. Protein secondary and tertiary structure
 2.1 Protein tertiary structure and folding patterns.
 2.2 Common tertiary structural motifs.
 2.3 Role of packing constraints in tertiary structure patterns.
 2.4 Divergent vs. convergent evolution of similar structure.

 3.1 Water and the hydrophobic effect.
 3.2 Tertiary and quaternary effect.
 3.3 Motifs in globular proteins.
 3.4 Properties of protein interiors and surfaces.
 3.5 Fibrous proteins.
 3.6 Structure of bone.

4. Protein folding and thermodynamics
 4.1 Protein folding and dynamics.
 4.2 Folding overview: Levinthal paradox.
 4.3 Condensation and molten globules.
 4.4 Ramachandran plots and amino acid propensities.
 4.5 Catalysis and assistance.
 4.6 Amino acid sequence variation and membrane protein folding.
 4.7 Chaperonin-assisted protein folding.

5. Allostery (Hemoglobin), Myoglobin structure and oxygen binding
 5.1 Hemoglobin subunits co-operativity, Hill coefficient.
 5.2 Quaternary structure changes and Sickle cell and other molecular diseases.
6. Fats
6.1 Fatty acids: structure, nomenclature, acyl glycerols, phospholipids, sphingolipids, glycolipids, lipoproteins.
6.2 Terpenoids and sterols: structure, properties and functions.
6.3 Function of lipids.
6.4 Signal transducing molecules.

7. Vitamins
7.1 Classification, occurrence of water-soluble vitamins.
7.2 Classification, occurrence and biological functions of thiamine, riboflavin, folic acid and B12.
7.3 Phenolics and alkaloids: Structure, biological properties and functions.

8. Covalent properties of nucleic acids
8.1 Modified nucleosides.
8.2 Properties of polynucleotides.
8.3 Secondary and tertiary structure.

9. Nucleic acid structure
9.1 Duplex stability.
9.2 Hybridization.
9.3 RNA structure.
9.4 Hairpin and pseudoknot structures, tRNA.

10. Nucleic acids
10.1 DNA and RNA helical geometries (A-Z), banding, deformation.

11. Nucleic acid analysis: DNA and RNA sequencing, determination of modified nucleotides.

12. RNA catalysis
12.1 Chemistry and structure of ribozymes.
12.2 Evolutionary implications.

13. Enzyme mechanisms
13.1 Principles of enzyme catalysis.
13.2 Proteases and polymerases, other examples.
13.3 Coenzymes and Cofactors.

14. Inborn errors of metabolism
Recommended Books

2. Champe, P.C., Harvey, R.A.; Lippincott’s Illustrated Reviews Biochemistry, Lippincott Williams & Wilkins, Philadelphia.

PAPER VI: BIOSTATISTICS AND POPULATION GENETICS

Duration: 3 Hours Max. Marks: 100 Periods : 80

Biostatistics

Unit I:

1. Definition Scope and applications of biostatistics

2. Collection, organization and representation of data (graphical- Bar, Histogram, Frequency polygon, line diagram & diagrammatic).

3. Basic statistics-Arithmetic mean, Harmonic mean, Geometric mean, Median, Mode, Mean deviation. (Direct, short-cut and step-deviation for all)

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
Unit II
2. Standard error; Confidence limits.
3. Probability distributions (Binomial, Poisson and Normal).
4. Testing of Hypothesis, level of significance; Type I and II errors.
5. Tests of statistical significance (Student’s t-test, Z-test, Chi-square test).
6. Correlation and regression.
7. Analysis of Variance (One way and two way ANOVA)

Population Genetics

Unit III
1. Concepts of evolution and theories of organic evolution with an emphasis on Darwinism.
2. Neo-Darwinism
 2.1 Hardy-Weinberg’s law of genetic equilibrium.
 2.2 Detailed account of destabilizing forces-
 (i) Natural selection
 (ii) Mutation
 (iii) Genetic drift
 (iv) Migration
 (v) Meiotic drive
 2.3 Genetic structure of natural populations.
 2.4 Variations - including transgressive variations
 2.5 Models explaining changes in genetic structure of populations.
 2.6 Factors affecting human disease frequency.
3. Molecular population genetics
 3.1 Patterns of change in nucleotide and amino acid sequences.
 3.2 Ecological significance of molecular variations.
 3.3 Emergence of Non-Darwinism-Neutral hypothesis.
4. Genetics of Quantitative traits in populations
 4.1 Analysis of quantitative traits.
 4.2 Quantitative traits and natural selection.
 4.3 Estimation of heritability.
 4.4 Genotype-environment interactions.
4.5 Inbreeding depression and heterosis.
4.6 Molecular analysis of quantitative traits.
4.7 Phenotypic plasticity.

Unit IV
1. Genetics of speciations
 1.1 Phylogenetic and biological concept of species.
 1.2 Patterns and mechanisms of reproductive isolation.
 1.3 Modes of speciation (allopatric, sympatric, parapatric & peripatric).
2 Molecular Evolution
 2.1 Gene evolution.
 2.2 Evolution of gene families, molecular drive.
 2.3 Assessment of molecular drive.
 2.4 Micro-and macro-evolution.
3. Molecular phylogenetics
 3.1 Construction of phylogenetic trees.
 3.2 Phylogenetic inference-distance methods, parsimony methods, maximum likelihood method.
 3.3 Immunological techniques.
 3.4 Amino acid sequence and phylogeny.
 3.5 Nucleic acid phylogeny-DNA-DNA hybridizations, restriction enzyme sites, nucleotide sequence comparisons and homologies.
 3.6 Molecular clocks.

Recommended Books

M.Sc. (Previous) Zoology

PRACTICAL EXERCISES

I. Biosystematics and Taxonomy:
 1. Identification, Classification and study of the animals from major invertebrate group (Protozoa to Hemichordate including minor phyla) using museum specimens, microscopic slides, models or charts or photographs.
 Determination of population density by quadrat method.

II. Anatomy:
 a. Major:
 1. **Leech**: Reproductive, excretory, nervous and haemocoelomic systems.
 2. **Crab**: Nervous system.
 3. **Scorpion**: Nervous and reproductive systems.
 4. **Mollusca**: General anatomy and Nervous systems of Patella, Lamellidens, Mytilus, Sepia and Aplysia.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
b. Minor:
 5. C.S. of arm of Starfish.
 7. Aristotle’s lantern of Sea urchin.

III. Museum Specimens: Identification, classification and distinguishing features of important representatives from various groups (Protozoa to Hemichordata).

IV. Study of Permanent Preparations (Protozoa to Hemichordata):
 Amoeba, Entamoeba, Polystomella, Actinophryx, Euglena, Noctiluca, Volvox colony, Trypanosoma, Giardia, Opatina, Nyciotherus, Balantidium, Vorticella, Monocystis, Plasmodium, Sycon T.S. and L.S., Genmule, Obelia colony, Obelia medusa, Aurelia tentaculocytes, T.S. Fasciola hepatica section through various regions of the body, Hirundinaria body sections through various regions, Daphnia, Cypris, Cyclops, T.S. Peripatus.

 Larva: Aurelia-planula, Redia, Cercaria, Metacercaria, Oncosphere, Cysticercus, Trochophore, Nauplius, Zoea, Mysis, Megalopa Phyllosoma, Veliger, Glochidium, Bipinnaria, Ophiopluteus, Echinopluteus, Auricularia, Tornaria.

V. Biological Chemistry:
 (i) Verification of Beer-Lambert’s Law.
 (ii) Quantitative estimation of the following in various tissues:
 a) Carbohydrates: Glycogen, glucose.
 b) Proteins: Total proteins - Lowry et al method
 c) Lipids: Phospholipids and cholesterol.
 d) Nucleic acid: DNA and RNA.
 e) Enzymes: Acid and alkaline phosphatases.

VI. Physiology:
 (i) Study of the following with the help of Computer Assisted Learning (CAL) (please see E-pharm programme).
 A. The effect of K⁺, Ca⁺⁺ acetylcholine and epinephrine on the isolated heart of frog* and **conclude your data with the graphic representation**
 Computer Assisted Learning (CAL) be included.
 B. The effect of various doses of acetylcholine arid Nor-epinephrine on blood pressure, heart rate and respiratory rate of the rabbit.
 C. The effects of Atropine, Epinephrine, Ephedrine and Eserine on Rabbit’s eyes. **Other such exercises can be framed from the E-Phram software.**
(ii) Determination of blood pressure, pulse rate, heart beat and respiration rate.
(iii) Photometric determination of hemoglobin in blood sample.
(iv) Determine of MCV, MCH, MCHC and colour index of the given sample of blood.
(v) Demonstration of the following in blood: Clotting time, erythrocyte sedimentation rate, haemolysis and crenation.
(vi) Determination of the urea in urine/blood.
(vii) Determination of the glucose in urine.
(viii) Tests of digestive enzymes in different parts of the alimentary canal.

Note: * indicates use of Computer soft wares.

VII. Cell & Molecular Biology & Biotechnology:
(i) Squash and smear preparations of testis of cockroach and grasshopper using aceto-orcein, Fuelgen and Giemsa stains.
(ii) Study of mitosis in onion root tip.
(iii) Study of giant chromosomes in the salivary gland of Chironomus or Drosophila larva.
(iv) Vital and supravital staining (with Neutral Red and Janus Green B) of cells of the testis of any insect or mammal to study the mitochondria.
(v) Chromosome study in cells of the testis of an insect / mammal / cells of the bone marrow of a mammal.
(vi) Paper chromatography: Unidimensional chromatography, using amino acids from purified samples and biological materials (Ascending and Descending).
(vii) Electrophoresis: Paper/Horizontal/Vertical – Proteins/DNA/RNA.
(viii) Study of prepared microscopic slides, including those showing various cell types, mitosis, meiosis and giant chromosomes.

Note: It is compulsory to submit prepared slides from each exercise for examination.

VIII. Population Genetics:
(i) Numerical problem based on Hardy Weimberg’s law, calculation of allelic frequencies, inbreeding genotypic frequencies and estimation of heritability.
(ii) Problems based on syllabus.

IX. Biostatistics:
(i) Preparation of frequency tables and graphs/line diagrams/bar diagrams/histogram/Pie charts.
(ii) Exercises on Arithmetic mean, Harmonic mean Geometric mean, Median, Mode (Direct, short-cut and step-deviation).

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
(iii) Calculation of standard deviation, variance and standard error of mean.
(iv) Calculation of probability and significance between means using Student's t-test and Chi-square test.
(v) Plotting the slope of a line on a graph; calculations of the slope of a line, coefficient correlation and regression.

M.Sc. (Previous) Zoology
PRACTICALS
Scheme of Practical Examination

Total Marks-200

I Day (I, II & III Papers)
Time: 5 hrs.
Max Marks: 100 Marks

1. Biosystematics & Taxonomy 10
2. Anatomy
 a. Major 10
 b. Minor 6
3. Population Genetics 10
4. Cell & Molecular Biology and Biotechnology 10
5. Spotting No. 1 – 8 24
6. Record 10
7. Viva-voce 10
8. Seminar & Submission of slides 5+5

Total=100

Total Duration: 2 days
(5 hrs. per day)
II Day (IV, V & VI Papers)
Max Marks: 100
1. Gen. Physiology
2. Biochemistry
3. Biostatistics
4. Spotting (1 to 5)
5. Record
6. Viva-voce
7. Seminar

Note:
1. With reference to anatomy (dissection, black papering and labelling) and type study candidates must be well versed in the study of various systems.
2. With reference to permanent preparations and microscopic slides, the exercise may be substituted with diagrams/photographs/models/charts etc.
3. Candidates must keep a record of all work done in the practical class and submit the same for inspection at the time of the practical examination.
4. The candidates may be asked to write detailed methodology wherever necessary and separate marks may be allocated for the same.
5. Mounting material for permanent preparations would be as per the syllabus as well as available through collection and culture methods.
6. It should be ensured that animals used in the practical exercise are not covered under the Wildlife Act 1972 and amendments made subsequently.
7. There are unlimited amounts of alternative practicals that can be carried out using observational and other works in the field. Field work also may be encouraged for the students to recognize their social and environmental responsibility. Non-invasive and non-harmful practical exercises for the study of anatomy, Physiology, Ethology, Epidemiology and Ecology may be designed.
M.Sc. (Zoology) FINAL

3 Hours Duration

Paper I Biology of Chordates
Paper II Environmental Biology and Ethology
Paper III Genes and Differentiation
Paper IV Tools and techniques in Biology
Paper V Special Paper
Paper VI Special Paper

Laboratory Exercises
Demonstration and Tutorials

SEMINAR

Note: The theory paper of M.Sc. Final (Zoology) will have the following pattern.

Question paper will have 5 (five) questions in all having equal marks.

(i) Question number 1 will be compulsory and will have 10 very short answer question of 2 mark each.

(ii) Question numbers 2 and 3 will consist of only short answer type questions with 4 subdivisions of 5 marks each. There will be internal choice, in these questions.

(iii) Question numbers 4 and 5 will be long answer type questions with internal choice.

PAPER I: BIOLOGY OF CHORDATES

Duration: 3 Hours Max. Marks – 100 Periods: 70

1. Origin and outline classification of the chordates. 3
2. Interrelationships of Hemichordata, Urochordata and Cephalochordata and their relations with other deuterostomes. 5
3. Life histories of sessile and pelagic tunicates, Ascidia, Herdmania, Pyrosoma, Salpa, Dolioolum and Oikopleura. 8
4. Neoteny 4
5. Origin, evolution and adaptive radiation of Chordates. 20

5.1 Geological time-scale and fossils.
5.2 Origin, evolution and general characters of Agnatha (Ostracoderm and Cyclostomes).
5.3 The early Gnathostomes (Placoderms).
5.4 A general account of the Elasmobranchii, Holocephali, Dipnoi and Crosspterygii.
5.5 Adaptive radiation in bony fishes.
5.6 Origin, evolution and adaptive radiation of Amphibia.
5.7 Origin and evolution of Reptiles. The conquest of land; Seymouria and related forms; Cotylosauria, basic types and outline classification of reptiles.
5.8 Dinosaurs.
5.9 Living Reptiles: a brief account of Rhynchocephalia. Chelonia, Crocodilia and Squamata.
5.10 Origin and evolution of Birds.
5.11 Origin of flight: Flight adaptations.
5.12 Origin of Mammals.
5.13 Primitive Mammals (Prototheria and Metatheria).
5.14 A general survey of the main radiations in eutherian, excluding detailed reference to individual orders.
5.15 Evolution of man: Relationship of man with other primates, fossil record of man's ancestry.
6. Organogenesis
6.1 Morphogenetic processes in epithelia and mesenchyme, organ formation.
6.2 Morphogenesis of the brain; neural crest cells and their accessory organs.
6.3 Development of the eye, heart and alimentary canal with accessory organs.
7. Embryonic adaptations
7.1 Evolution of the cleidoic egg, its structural and physiological adaptations.
7.2 Development and physiology of extra-embryonic membranes in amniotes.
7.3 Evolution of viviparity.
7.4 Development, types and physiology of the mammalian placenta.
8. Metamorphosis in Amphibia
8.1 Structural and physiological changes during metamorphosis.
8.2 Endocrine control of metamorphosis.
9. Regeneration

9.1 Types of regeneration (physiological, reparative and compensatory hypertrophy) regenerative ability in chordates.

9.2 Morphological and histological process in amphibian limb regeneration.

9.3 Origin of cells for regenerations and differentiation.

Recommended Books

M.Sc. FINAL (ZOOLOGY)

PAPER II : ENVIRONMENTAL BIOLOGY AND ETHOLOGY

Duration : 3 Hours \hspace{1cm} Max. Marks – 100 \hspace{1cm} Periods : 70

Unit I - Environmental Biology

1. Interactions between environment and biota

 1.1 Concept of habitat and ecological niches

 1.2 Limiting factors.

 1.3 Energy flow, food chain, food web and trophic levels, ecological pyramids.

 1.4 Biotic community: Concept, structure, dominance, fluctuation and succession.

 1.5 Various nutrient cycles in nature.

\[\text{Dy. Registrar (Academic-I)}\]

\[\text{University of Rajasthan} \hspace{1cm} \text{Jaipur}\]
2. Ecosystem dynamics and management
 2.1 Complexity, stability and homeostasis of ecosystems.
 2.2 Functional aspects and productivity concept.
 2.3 Niche, ecotone and overlapping of niches.
 2.4 Character displacement, speciation and extinction.

3. Environmental impact assessment
 3.1 Environmental pollution.
 3.2 Population and impact of urbanization.

4. Principles of conservation: Conservations strategies
 4.1 Various natural resources.
 4.2 Present status and future needs.
 4.3 Management.
 4.4 Biodiversity of India and Rajasthan and their management.

5. Prospects and strategies for sustainable communities.

6. Organisation and dynamics of ecological communities
 6.1 The habitat approach.
 6.2 A detailed knowledge of communities of fresh water, marine, terrestrial and esturine areas with respect to
 6.2.1 Extent
 6.2.2 Zonation
 6.2.3 Environment
 6.2.4 Biota
 6.2.5 Adaptations

7. The ecological outlook
 7.1 Applied human ecology
 7.2 Radiation (electromagnetic and ionizing) and environment
 7.3 Climatic changes (El Nino and La Nina)
 7.4 Space ecology
 7.5 Human future
Unit II: Ethology
1. Introduction to Ethology
 1.1 Branches and significance of Ethology: Ethophysiology, Ethoendocrinology, Neuroethology, Human ethology, Behavioural genetics, sociobiology.
 1.3 Proximate and ultimate mechanisms of ethology.
2. Concepts of Ethology:
 2.1 Motivation and Innate behaviour (Fixed action pattern).
 2.2 Sign stimulus, super normal stimulus.
 2.3 Action specific energy and Innate releasing mechanism.
 2.4 Difference between learned and Innate behaviours.
3. Nervous system and Behaviour
 3.1 Mammalian brain structure and behaviour.
 3.2 Hypothalamus and Innate behaviour.
 3.3 Behavioural endocrinology including effect of drugs.
 3.4 Orientation - taxis and kinesis, bird migration and navigation
 3.5 Biological clocks, Chronobiology.
4. Learning and Imprinting
 4.1 Introduction and definitions.
 4.2 Habituation; Conditioning.
 4.3 Trial and error; Imprinting.
 4.4 Neural mechanism of learning.
 4.5 Birds song learning behavior in the context of Tinbergen’s 4 aims.
5. Sociobiology
 5.1 Introduction- definition, WO Wilson, Richard Dawkins, WD Hamilton.
 5.2 Units of sociobiology,
5.3 Hamilton's theory and Altruism, cooperation, reciprocation and Eusociality,
5.4 Properties, advantages of a social group, Social organisation in primates.

6. **Social Behaviour**
 6.1 Parental care- Types, Parent offspring conflict.
 6.2 Courtship and mating.
 6.3 Aggression and territory
 6.4 Evolution of social systems.

7. **Communication in animals**
 7.1 Auditory, Echolocation, Infra- and ultra-sounds.
 7.2 Tactile, Visual,
 7.3 Pheromones- vertebrates and invertebrates
 7.4 Language of honey bees-circle and waggle dance.

8. **Human Behaviour**-
 8.1 Desmond Morris, Sarah Hrdy.
 8.2 Sign stimulus, Imprinting.
 8.3 Kinship, Aggression.
 8.4 Pheromones.

Recommended Books (Environmental Biology)

Ethology

PAPER III: GENES AND DIFFERENTIATION

Duration : 3 Hours
Max. Marks – 100

1. Introduction to animal development.
 1.1 Problems of developmental biology.
 1.2 Developmental patterns in metazoans.
 1.3 Development in unicellular eukaryotes.
2. Creating multicellularity
 2.1 Cleavage types.
 2.2 Comparative account of gastrulation.
3. Early Vertebrate development
 3.1 Neurulation and ectoderm.
 3.2 Mesoderm and endoderm.
4. Cytoplasmic determinants and autonomous cell specification
 4.1 Cell commitment and differentiation.
 4.2 Cell specifications, in nematodes.
 4.3 Germ cell determinants.
 4.4 Germ cell migration.
 4.5 Progressive cell–cell interaction and cell specification fate.
5. Body Axes
 5.1 Establishment of body axes in mammals and birds.
 5.2 Proximate tissue interactions.
 5.3 Genetics of axis specifications in drosophila.
6. Homeobox concept in different phylogenetic groups.
7. Tetrapod limb development.
8. Hormones as mediators of development.
 8.1 Amphibian metamorphosis.
 8.2 Insect metamorphosis.
 8.3 Ovarian luteinization and mammary gland differentiation.
9. Environmental evolution and animal development
 9.1 Environmental cues and effects.
 9.2 Malformations and disruptions.
 9.3 Changing evolution through development modularity.
 9.4 Developmental constraints.
 9.5 Creating new cell types-basic evolutionary mystery.
10. Biology of sex determination
 10.1 Chromosomal sex determination - Mammals and Drosophila.
 10.2 Testis determination genes.
10.3 Ovarian development.
10.4 Secondary sex determination in mammals.
10.5 Environmental sex determination.

11. Cell diversification in early embryo
 11.1 *Xenopus* blastomeres.
 11.2 Morphogen gradients.
 11.3 Totipotency & Pleuripotency.
 11.4 Embryonic stem cells.
 11.5 Renewal by stem cells-epiderms.
 11.6 Skeletal muscle regeneration.
 11.7 Connective tissue cell family.

12. Hemopoietic stem cells
 12.1 Stem cell disorders.
 12.2 Blood cell formation.
 12.3 Bone marrow transplants.
 12.4 Gene therapy.

Recommended Books

PAPER IV : TOOLS AND TECHNIQUES IN BIOLOGY

Duration : 3 Hours

Max. Marks – 100

Sections : 70

Section A : Tools

1. Principles and application of
 1.1 Light Microscopy and micrometry.
 1.2 Phase contrast microscopy.
 1.3 Interference microscopy.
 1.4 Polarized microscopy.
 1.5 Fluorescence & epifluorescence microscopy.
 1.6 Transmission electron microscopy.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
1.7 Scanning electron microscopy.
1.8 Confocal scanning and deconvolution microscopy.
1.9 Atomic Force Microscopy.

2. Principles and application of
2.1 Ultracentrifugation: Differential and density gradient.
2.2 Electrophoresis: Various media for electrophoresis and various types such as paper, agarose, PAGE, submerged DNA electrophoresis, Pulse Chase electrophoresis, iso-electrofocussing points and capillary electrophoresis.
2.3 Chromatography: Various types such as paper, TLC, GLC, HPLC, Ion-exchange and Affinity chromatography.
2.4 Freeze techniques: freeze-drying, freeze substitution, freeze fracture and freeze itch.
2.5 X-Diffraction.
2.7 Flow cytometer / Fluorescence activated cell sorter.

3. Principles and application of radiation techniques in Biology
3.1 Radiation dosimetry.
3.2 Radioisotopes and half life of isotopes.
3.3 Tracer techniques in biology.
3.4 Cerenkov radiation.
3.5 Liquid scintillation counter.
3.6 G.M. Counter
3.7 Autoradiography.

Section B : Techniques

1. Assay
1.1 Definition and criteria of reliability.
1.2 Chemical assays.
1.3 Biological assays in vivo and in vitro assays.

2. Principles of cytological and cytochemical techniques
2.1 Fixation, chemical basis of fixation by formaldehyde, gluteraldehyde, chromium salts, mercury salts, osmium salts, alcohol and acetone.
2.2 Chemical basis of staining of carbohydrates, proteins, lipids and nucleic acids.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
3. Principles and techniques of
 3.1 Nucleic acid hybridization and cot curve.
 3.2 Sequencing of proteins and nucleic acids.
 3.3 Blotting techniques (Southern, Northern and Western).
 3.4 Dot and Slot blots.
 3.5 Biotinylated DNA probe.
 3.6 Polymerase chain reaction (PCR).
 3.7 Screening of genomic and cDNA libraries.

 4.1 Basic techniques.
 4.2 Cutting and joining of DNA molecules.
 4.3 Changing genes: Site directed mutagenesis.
 4.4 Analysis of DNA sequences.
 4.5 Cloning strategies gene library and cDNA
 4.6 DNA transformation techniques and their application in agriculture, health,
 medicine and industry.
 4.7 Introducing genes in animal cells.
 4.8 Application of recombinant DNA technology.
 (a) Recombination, selection and screening.
 (b) Nucleic acid probes and their application.
 (c) Impact of recombinant technology.
 4.9 Hybridoma technology.

5. Cell Culture techniques
 5.1 Design and functioning of tissue culture laboratory.
 5.2 Cell proliferation measurements.
 5.3 Cell viability testing.
 5.4 Culture media preparation and cell harvesting methods.

6. Cryotechniques
 6.1 Cyropreservations for microscopy.
 6.2 Cryotechniques for microscopy.
Recommended Books

M.Sc. (Final) Zoology General Papers

PRACTICALS

General Papers:

I. Anatomy
 (a) Major
 (i) Cranial nerves of Wallago attu.
 (ii) Cervical nerves of Rat.
 (iii) Reproductive organs of Rat.
 (b) Minor
 (i) Accessory respiratory organs of Heteropeustes fossilis.
 (ii) Labrinth organs of Anabas testudens.

II. Study of Museum Specimens/Models/Charts/Digital media

 Reptilia : Testudo, Chelone, Sphenodon, Calotes, Hemidactylus, Phrynosoma, Draco, Varamus, Chameleon, Cobra, Hydrophis, Rattle snake, Viper, Pit, Viper, Krait, Eryx, Gavialis.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur

Mammals : Ornithorhynchus, Echidna, Marcopus, Hedgehog, Manis, Loris, Bat, Mongoose, Hystrix, Otter.

III. Study of Microscopic slides

Pisces : Placoid scale, cycloid scale, epiplialoid scale.

Amphibia : V.S. skin of frog. T.S. passing through stomach, duodenum, intestine, liver, pancreas, lung, kidney, testis, ovary, spinal cord, bone.

Reptilia : V.S. skin of lizard.

Aves : V.S. skin of bird, contour feather, down feather.

IV. Comparative Osteology (Models/Charts/Diagrams):

Comparative account of axial and appendicular skeletons of Frog, Varanus, Fowl and Rabbit (both articulated and disarticulated with the help of models, artificial skeleton and bones).

V. Tools and Techniques

(i) Operations of various types of microscopes.

(ii) Use of Phase-contrast microscope.

(iii) Use of Flourescence microscope and demonstration of nucleic acid by acridine orange or ethidium bromide.

(iv) Preparation of tissue for TEM.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
(v) Tissue homogenization and fractionation by differential centrifugation for isolation of mitochondria, nucleic acids and cytosol and use of marker enzymes for assessment of the purity of the components.

(vi) Demonstration of GLC, atomic absorption spectrophotometer, CASA etc.

(vii) Standardisation of oculometer and measurements of tubular diameter cell heights, nuclear diameters, etc.

VI. Environment Biology

(i) Analysis of pond / stagnant water for: pH, Acidity, Alkalinity, Dissolved oxygen, CO₂, Salinity, Phosphates, COD and BOD.

(ii) Map (World/India/Rajasthan) to localize biodiversity, Major rivers, estuaries, oceans.

(iii) Collection, isolation and identification of Planktons (Phyto- and Zoo-planktons).

VII. Ethology

(iv) Study of the food preference in Tribolium or any other grain/ pulse pest.

(v) Study of communication in Earthworm by Pheromones.

(vi) Effect of toxicants on movement of Fish.

(vii) Study Learning by Trial and Error in Rat using Hebb- William Maze.

(viii) Imprinting study using Chick.

(ix) Listing of all the animals and recording of behaviour in Zoo/Sanctuary/National Park.

VIII Development Biology

(i) Frog: Egg, Cleavage (2-, 4-, & 8-celled), Morula, Blastula (including Yolk Plug stage) and neural tube stages (Slides as well as preserved materials).

(ii) Chick: 16 hrs, 21 hrs, 24 hrs, 28 hrs, 33 hrs, 38 hrs, 48 hrs, 70 hrs and 96 hrs.

(iii) Chick development: Appearance of eyes, hair, beak and limbs.

(iv) Window making: To study development of chick and blastoderm mounting.

Notes:

1. With reference to anatomy (dissections) and type study candidates must be well versed in the study of various systems with the help of charts/models/CD-ROMs, multimedia computer based simulations including computer assisted learning (CAL) and other software.

Praj
Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
2. With reference to permanent preparations and microscopic slides, in case of non-availability, the exercise should be substituted with diagrams / photographs / models / charts etc.

3. Candidates must keep a record of all work done in the practical class and submit the same for inspection at the time of the practical examination.

4. The candidates may be asked to write detailed methodology wherever necessary and separate marks may be allocated for the same.

5. Mounting material for permanent preparations would be as per the syllabus or as available through collection and culture methods.

6. Slides to be submitted in the exercises during the examination.

7. It should be ensured that animals used in the practical exercise are not covered under the Wildlife Act 1972 and amendments made subsequently.

Scheme of Practical Examination

Duration: 5 hrs.
Max. Marks: 100

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Anatomy</td>
<td></td>
</tr>
<tr>
<td>a. Major</td>
<td>12</td>
</tr>
<tr>
<td>b. Minor</td>
<td>8</td>
</tr>
<tr>
<td>2. Ethology</td>
<td>5</td>
</tr>
<tr>
<td>3. Environmental Biology</td>
<td>10</td>
</tr>
<tr>
<td>4. Tools and Techniques</td>
<td>10</td>
</tr>
<tr>
<td>5. Development Biology</td>
<td>10</td>
</tr>
<tr>
<td>6. Spotting (No. 1-8)</td>
<td>24</td>
</tr>
<tr>
<td>7. Record + Submission of slides</td>
<td>5+5</td>
</tr>
<tr>
<td>8. Viva-voce</td>
<td>10</td>
</tr>
</tbody>
</table>

Total = 100
Special Paper for M.Sc. Zoology (Final)

Candidate can opt any one special paper out of the following:

1. Cancer Biology
2. Cell and Molecular Biology
3. Developmental Biology
4. Endocrinology
5. Entomology
6. Environmental Biology
7. Fish Biology
8. Radiation Biology
9. Reproductive Biology
1. CANCER BIOLOGY

PAPER-V: NATURE OF CANCER

Duration : 3 Hours
Max. Marks – 100

1. Introduction: Cancer as a cellular disease.
 1.1 Historical perspectives.
 1.2 Cancer causation.
 1.3 Cancer treatment.
 1.4 Death due to cancer.

2. Occurrence of cancer
 2.1 Present day status of cancer in India.
 2.2 Status of cancer occurrence in different parts of the world.
 2.3 Cancer of different sex and age group.

3. Tumor classification.
 3.1 Benign and malignant tumors.
 3.2 Sarcoma and carcinoma.
 3.3 Leukemia and lymphoma.
 3.4 Ascites tumors.
 3.5 Teratocarcinoma.

4. Etiology of cancer
 4.1 Staging and grading of cancer.
 4.2 *In vitro* cell transformation.
 4.3 Apoptosis.

5. Cancer cell
 5.1 Structural and ultrastructural profiles.
 5.2 Biochemical properties.
 5.3 Behavioural properties.

6. Genetic basis of cancer
 6.1 Basic concepts of cancer genetics.
 6.2 Relationship between cancer incidence and age.
6.3 Cellular and genetic basis of cancer.
6.4 Types of genetic risk factors for cancer.
6.5 Chromosomal abnormalities in tumor.
6.6 Heritable cancer and tumor suppressors.

7. Cancer cell growth patterns and cell kinetics
 7.1 Tumor growth.
 7.2 Cell cycle.
 7.3 Cell proliferation in tumor tissue.
 7.4 Experimental tumors.
 7.5 Human tumors.
 7.6 Cell proliferation, prognosis and therapies.

8. Metastasis
 8.1 Introduction.
 8.2 Metastatic process.
 8.3 Metastatic ability of tumor cell population.
 8.4 Properties of metastatic cells.
 8.5 Genetic basis of metastasis.

PAPER-VI: CAUSATION, PREVENTION AND CURE OF CANCER

Duration : 3 Hours

Max. Marks – 100

Periods : 90

1. Introduction:
 1.1 Historical aspects.
 1.2 Environmental factors and cancer.
 1.2.1 Tobacco, Alcohol, diets, occupational exposures, hormones and other exposure.
 1.3 Specific types of cancer: Hepatocellular carcinoma, Melanoma, Breast cancer, lung cancer, gynaecological cancers, Prostate cancers, Oral cancers.

2. Causation of cancer
 2.1 Hereditary cancer.
 2.1.1 Introduction.
2.1.2 Xeroderma pigmentosum.
2.1.3 Fanconis anaemia.
2.1.4 Bloom syndrome.
2.1.5 Ataxia telangiectasia.
2.1.6 Retinoblastoma.

2.2 Virus and cancer.
2.2.1 Introduction.
2.2.2 Viruses and oncogenes.
2.2.3 Historical perspectives.
2.2.4 Tumor virus and human cancer.
2.2.5 Retrovirus.
2.2.6 DNA tumor viruses.

2.3 Chemical carcinogenesis.
2.3.1 Introduction.
2.3.2 Biological characteristics of chemical carcinogenesis.
2.3.3 Initiation, promotion and progression of carcinogenesis.
2.3.4 Assay methods for chemical carcinogens.
2.3.5 Chemical carcinogens in human cancer causation.

2.4 Radiation carcinogenesis
2.4.1 Cell transformation.
2.4.2 Mechanism of radiation cell transformation.
2.4.3 Radiation carcinogenesis in animals.
2.4.4 Human data on radiation carcinogenesis.

2.5 Hormones and cancer.
2.5.1 Introduction.
2.5.2 Hormone production by tumors.
2.5.3 Hormone and cancer causation.
2.5.4 Hormones and cancer treatment.
3. Nutrition and Cancer
 3.1 Cancer risks form naturally occurring carcinogens in food, food contaminants, additives.
 3.2 Micronutrients in diet: Protein, carbohydrate, fat, fibers.
 3.3 Micronutrients in diet: Mineral, salts, green yellow vegetables, fruits.
4. Therapy of cancer
 4.1 Surgical removal.
 4.2 Chemotherapy
 4.3 Radiotherapy.
 4.4 Immunotherapy.
 4.5 Hyperthermia.
 4.6 Management of therapies of cancer.
 5.1 Primary prevention: Education, motivation and legislation.
 5.2 Secondary prevention.
 5.2.1 Detection of precancerous and early cancerous lesions in body.
 5.2.2 Chemoprevention.
6. Oncogenes
 6.1 Introduction
 6.2 Detection of oncogenes in human cancer cells.
 6.3 Activation of oncogenes.
 6.4 Antioncogenes.

CANCER BIOLOGY

Duration : 5 Hours

Max. Marks – 100

Scheme of practical Examination and Distribution of the marks:

1. Preparation and comments on chromosomal aberrations, induced by carcinogens. 15
2. Preparation and comments on micronuclei induced by carcinogens. 15

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
3. Microtomy and Pathological study 20
4. Identification and comments on spots (10) 20
5. Viva-Voice 10
6. Project work on Tumor induction in Laboratory mice / rat. 20
 + one project, seminar

Grand Total 100

Note: It should be ensured that animals used in the practical exercises are not covered under the Wildlife Act 1972 and amendments made subsequently.

Recommended Books

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur

2. CELL AND MOLECULAR BIOLOGY
 Paper - V

Duration : 3 Hours Max. Marks – 100 Periods : 90

1. Biomembranes
 1.1 Phospholipids; as main lipid constituents.
 1.2 Cytosolic and exoplasmic face of biomembranes.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
1.3 Universality of biomembranes.
 1.3.1 Difference in phospholipid composition in two membrane leaflets.
 1.3.2 Intrinsic and extrinsic proteins.
 1.3.3 Integral and glycolipids.
 1.3.4 Mobility of lipids and integral proteins in biomembrane.
 1.3.5 Fluidity of biomembranes.
 1.3.6 Cell Junctions (Gap, tight and demosomes etc.)

2. Transport across cell membrane
 2.1 Diffusion of small molecules.
 2.2 Osmosis and water channels.
 2.3 Uniporter-catalyzed transport, Difference between uniport catalyzed transport and passive diffusion. GLUT-1 transport and its kinetics.
 2.4 Intracellular ion environment and membrane electric potential.
 2.5 Active transport. P-class ion pumps. F-class and V-class ion pumps and ABC superfamily. Plasma membrane Ca$_2^+$ATPase pump. Muscle Ca$_2^+$ ATPase pump and Na$^+$/K$^+$ ATPase pump.
 2.6 Cotransport by symporters and antiporters.
 2.7 Transport across epithelia.

3. Cytoskeleton
 3.1 Microfilaments
 3.1.1 Actin cytoskeleton, G-actin and F-actin and structural and functional polarity, Cortical actin network, erythrocytic cytoskeleton and platelet cytoskeleton.
 3.1.2 Actin bundle support projecting fingers of membrane.
 3.1.3 Dynamics of actin assembly, Actin polymerization, Toxins effect on actin monomer, polymer equilibrium stabilization of actin filaments by actin capping protein, Movement by actin polymerization.
 (a) Intracellular bacterial and viral movements.
 (b) Actin polymerization at the leading edge of moving cells.
3.1.4 Myosin

(a) Structure and mechanism of movement with actin
(b) Conformational changes in myosin during movement.

3.2 Microtubules

3.2.1 Microtubules structure and microtubule assembly from organizing centers.

3.2.2 Microtubule dynamics.

3.2.3 Microtubule associated proteins (MAPs) and cross-linking of microtubules.

3.3 Microtubules and mitosis

(a) Centrosome duplication.
(b) Kinetochore and force for poleward chromosome movement.
(c) Organization of spindle pole and orientation of assembly.
(d) Formation of poles and capture of chromosomes.
(e) Kinetochore and force of poleward chromosome movement.
(f) Astral microtubules and cytokinesis.
(g) Microtubules and plant cell formation.

3.4 Kinesin and Dynein.

3.5 Cell movements:

(a) Intracellular transport: Role of kinesin and dynein, microtubule tracks and intracellular membrane vesicles.
(b) Amoeboid movements.
(c) Second messengers and signal transduction pathway for coordination of migration of cells.

4. Cilia and Flagella

4.1 Structure and movements

(a) Sliding of outer doublet.
(b) Dynein sliding forces in axonemes.
(c) Dynein and exonemal bending.
(d) Dynein regulatory complex.
5. **Cell-Cell Signalling**
 5.1 Endocrine, paracrine and autocrine signaling.
 5.2 Receptor proteins: Cell surface receptors and intracellular receptors.
 5.3 Cell surface receptors: G-protein coupled receptors, ion channel receptors, tyrosine kinase-inked receptors and receptors with intrinsic enzymatic activity.
 5.4 Second messenger System - cAMP and IP$_3$DAG.
 5.5 MAP kinase pathways.
 5.6 Signaling from plasma membrane to nucleus (a) CREB links CAMP signals to transcription (b) MAP kinase.

6. **Signal - Mediated transport through Nuclear Pore**
 6.1 Nuclear pore complex
 6.2 Nuclear exports signals and transport of cargo proteins from nucleus to cytosol.
 6.3 Nuclear localization signals and transport of cargo proteins from cytoplasm to nucleus.
 6.3 Nuclear localization signals and transport of cargo proteins from cytoplasm to nucleus.

7. **Cell-Cell adhesion and communication**
 7.1 Cadherin mediated Ca$_2^+$ dependent homophilic cell-cell adhesion.
 7.2 N-CAMs mediate Ca$_2^+$ independent homophilic cell-cell adhesion.
 7.3 Cadherin containing junctions connect cells.
 7.4 Gap junctions and connexion.

8. **Cell matrix adhesion**
 8.1 Integrins: in cell matrix and cell-cell interaction.
 8.2 Integrin and cell to substratum attachment.
 8.3 Collagen basic structure and assembly.
 8.4 Non-collagen components of extracellular matrix (Laminin, fibronectin and cell surface proteoglycans)
 8.5 Plant cell wall.
 8.6 Auxin and cell expansion.
 8.7 Cellulose fibril synthesis and orientation.
 8.8 Plasmodesmata.
9. **Cell Cycle**
 9.1 Bacterial cell cycle (Helmstetier – Cooper or I+C+D model).
 9.2 Partition and cytokinesis.
 9.3 Eukaryotic cell cycle – G1, S, G2 and M phases.
 9.4 Cell cycle and check points.
 9.5 Molecular basis of cell cycle regulation.
 (a) Cyclins and cyclin – dependent kinases.
 (b) Regulation of CDK cyclin activity.

10. **Cancer**
 10.1 Tumor cells and onset of cancer.
 10.2 Proto-oncogenesis and tumor suppressor genes.
 10.3 Mutation causing loss of cell cycle.
 10.4 Mutations affecting genome stability.

11. **Aging: The biology of senescence**
 11.1 Maximum life span and life expectancy.
 11.2 Causes of aging
 (a) General wear and tear and genetic instability.
 (b) Free radicals, oxidative damage and antioxidants.
 (c) Telomerases and aging.

12. **Cell Death**
 12.1 Apoptosis and necrosis.
 12.2 Apoptosis-its characteristics.
 12.3 Genes involved in apoptosis.
 12.4 Identification of apoptosis.

13. **Molecular structure of genes and chromosomes**
 13.1 Molecular definition of gene.
 13.2 Chromosomal organization of genes and non-coding DNA.
 13.3 Mobile DNA.
 13.4 Functional rearrangements in chromosomal DNA.
13.5 Organizing cellular DNA into chromosomes.
13.6 Morphological and functional elements of eukaryotic chromosomes.

14. Genetic analysis in cell biology
 14.1 Mutation: Type and causes.
 14.2 Isolation and analysis of mutants.
 14.3 Genetic mapping of mutations.
 14.4 Molecular cloning of genes defined by mutations.
 14.5 Gene replacement and transgenic animals.

15. Regulation of Gene Expression
 15.1 Operon concept.
 15.2 Catabolic repression.
 15.3 Positive and Negative regulation.
 15.4 Inducers and corepressors.
 15.5 Regulation by attenuation: his and trp operons.

16. DNA binding proteins and gene regulation
 16.1 DNA binding domains.
 16.2 Homeodomain proteins.
 16.3 Zinc finger proteins.
 16.4 Winged-helix (Forked head) proteins.
 16.5 Leucine-Zipper proteins.
 16.6 Helix Loop helix proteins.

17. Protein sorting: Organelle biogenesis and protein synthesis.
 17.1 Synthesis and targeting of mitochondrial and chloroplast proteins.
 17.2 Synthesis and targeting of peroxisomal proteins.
 17.3 Secretory pathways.
 17.4 Translocation of secretory proteins across the ER membrane.
 17.5 Insertion of membrane proteins in the ER membrane.
 17.6 Post-translation modifications in rER.
 17.7 Protein glycosylation in ER and Golgi complex.
17.8 Golgi and Post-Golgi protein sorting and proteolytic processing.
17.9 Receptor-mediated endocytosis and sorting of internalized proteins.
17.10 Molecular mechanisms of vesicular traffic.

CELL AND MOLECULAR BIOLOGY
Paper - VI

Duration : 3 Hours Max. Marks – 100 Periods : 90

1.1 Discovery of humoral and cellular immunity.
1.2 Early theory of immunity.
1.3 Components of immunity.
1.4 Innate (nonspecific) immunity.
 1.4.1 Anatomic barrier.
 1.4.2 Physologic barriers
 1.4.3 Phagocytic barriers.
 1.4.4 Inflammatory barriers.
 1.4.5 Collaboration between innate and adaptive immunity.
1.5 Adaptive (specific) immunity.
 1.5.1 Cell of the immune system (B-lymphocytes, T-lymphocytes and Antigen presenting cells.).
 1.5.2 Functions of humoral and cell-mediated immune responses.
 1.5.3 Recognition of antigen by B-and T-lymphocytes.
 1.5.4 Generation of lymphocyte specificity and diversities.
 1.5.5 Role of MHC.
 1.5.6 Processing and presentation of antigen.
 1.5.7 Clonal selection of lymphocytes.
 1.5.8 Cellular interactions required for generation of immune responses:
 a. Activation and proliferation of T-Helper cells
 b. Generation of Humoral immune response
 c. Generation of CMI

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
2. Cells and organs of immune system
 2.1 Hematopoiesis
 2.1.1 B-Lymphocytes, T-lymphocytes, Null cells.
 2.1.2 Mononuclear cells phagocytes (antimicrobial and cytotoxic activities:
 antigen processing and presentation, secretion of factors).
 2.1.3 Granulocytic cells (Neutrophils, Eosinophils and Basophils).
 2.1.4 Mast cells.
 2.1.5 Dendritic cells.
 2.2 Organs of immune system.
 2.2.1 Primary lymphoid organs (Thymus, bone marrow).
 2.2.2 Secondary lymphoid organs (Lymph nodes, spleen, mucosal associated
 lymphoid tissue, cutaneous associated lymphoid tissue).
 2.2.3 Lymphatic system
 3. Antigens
 3.1 Immunogenicity versus antigenicity.
 3.2 Factors that influence immunogenicity.
 3.2.1 Contribution of the immunogens (foreignness, molecular size, chemical
 composition and heterogenesity, susceptibility to antigen processing
 and presentation).
 3.2.2 Contribution of biological system. (genotype of the recipient animal,
 immunogen dosage and route of administration, adjuvant).
 3.2.3 Haptens.
 4. Immunoglobulins: Structure and function
 4.1 Molecular structure of Ig, Light chain and Heavy chain.
 4.2 Immunoglobulin domains.
 4.2.1 Variable region domains (CDRs and antigen binding, conformational
 changes included by antigen binding)
 4.2.2 Constant region (CH and CL domains, hinge region and other constant
 region domains).
 4.3 Immunoglobulin classes: lgG, lgM, lgA, lgE and lgD and their biological
 activities.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
4.4 Immunoglobulin mediated effectors functions (Opsonization activation of complement, antibody dependent cell mediated cytotoxicity).

4.5 Antigenetic determinants on immunoglobulin (isotype, allotype and idiootype).

4.6 Monoclonal antibodies.
 4.6.1 Formation and selection of hybrid cells.
 4.6.2 Production of monoclonal antibodies.
 4.6.3 Clinical uses of monoclonal antibodies.
 4.6.4 Catalytic monoclonal antibodies (enzymes).

5. Organization and expression of Ig genes
 5.1 Genetic model compatible with Ig structure.
 5.1.1 Germ line and somatic variation models.
 5.1.2 Two gene model of Dryer and Bennett.
 5.1.3 Verification of Dryer and Bennett hypothesis.
 5.2 Multigene organization of Ig genes.
 5.2.1 I-chain multigene family
 5.2.2 K-chain multigene family.
 5.2.3 Heavy chain multigene family.
 5.3 Variable region gene rearrangement.
 5.3.1 V-J rearrangements in light chain DNA.
 5.3.2 V-D-J rearrangements in heavy chain DNA.
 5.4 Mechanism of variable region DNA rearrangement.
 5.4.1 Recombination signal sequences.
 5.4.2 Enzymatic joining of gene segments.
 5.4.3 Identification of Raf-1 and Raf-2 genes.
 5.4.4 Defects in Ig gene rearrangements.
 5.4.5 Productive and non-productive arrangement.
 5.4.6 Allelic exclusions.
 5.5 Generation and antibody diversity.
 5.5.1 Multiple germ line V,D and J gene segments.
 5.5.2 Combinatorial V-J and V-D-J joining.
 5.5.3 Junctional flexibility.
5.5.4 P-addition and N-addition.
5.5.5 Association of heavy and light chain.

5.6 Class switching among constant region genes.
5.6.1 Expression of Ig genes.
 a. Differential RNA processing of heavy chain primary transcripts.
 b. Expression of membrane of secreted Ig.
 c. Stimultaneous, assembly and secretion of IgM and IgD.
 d. Synthesis, assembly and secretion of Ig.

5.6.2 Regulation of Ig gene transcription.
 a. Effect of DNA rearrangement of transcription
 b. Inhibition of Ig-gene expression in T-cells.

5.6.3 Antibody genes and antibody engineering.
 a. Chimeric and hybrid monoclonal antibodies.
 b. Monoclonal antibodies constituted from Ig gene libraries.

6. Antigen-Antibody Interaction
6.1 Antibody affinity and avidity
6.2 Cross reactivity.
6.3 Aggultination reactions.
6.4 Precipitation reaction.
6.5 Complement pathways (Classical, Alternative and Lectin) and complement fixation test.

7. Major histocomptability complex.
7.1 General organization and inheritance of MHC.
 7.1.1 Location and function of MHC regions.
 7.1.2 MHC haplotypes.
 7.1.3 Congenic MHC mouse strains.

7.2 MHC molecules and genes.
 7.2.1 Structure of class I molecules.
 7.2.2 Structure of class II molecules.
 7.2.3 Organization of class I and Li genes.
 7.2.4 Peptide binding by MHC molecules.
 7.2.5 Class III molecules.
7.3 Genomic maps of MHC genes.
 7.3.1 Maps of class I MHC.
 7.3.2 Maps of class II MHC.
 7.3.3 Maps of class III MHC.
7.4 Cellular distribution of MHC molecules.
7.5 Regulation of MHC expression.
7.6 MHC and immune responsiveness.
7.7 MHC and diseases susceptibility.

8. Antigen Processing and Presentation

8.1 Role of antigen presenting cell.
 8.1.1 Early evidence for the necessity of antigen processing.
 8.1.2 Cells that function in antigen presentation

8.2 Evidence for two processing and presentation pathways.
 8.2.1 Endogenous antigens. The cytosolic pathways.
 a. Peptide generation by proteosomes.
 b. Peptide transport from the cytosol to RER.
 c. Assembly of peptide with class I MHC molecules.
 8.2.2 Exogenous antigens: The endocytic pathway.
 a. Peptide generation in endocytic vesicles.
 b. Transport of class II MHC molecules to endocytic vesicles.
 c. Assembly of peptide with class II MHC molecules.

8.3 Presentation of non-peptide bacterial antigens.

9. Cytokines

9.1 Properties of cytokines.
9.2 General structure of cytokines.
9.3 Function of cytokines.
9.4 Cytokines related diseases.
 9.4.1 Bacterial septic shock.
 9.4.2 Bacterial toxic shock and similar diseases.
 9.4.3 Lymphoid and myeloid cancers.
 9.4.4 Chagas diseases.
10 Immune system in health and diseases
 10.1 Immune response to infectious diseases.
 10.1.1 Viral infections.
 a. Viral neutralization by humoral antibody.
 b. Cell mediated antiviral mechanism.
 c. Viral evasion of host defence mechanisms.
 10.1.2 Bacterial infections.
 a. Immune responses to extra-cellular and intracellular bacteria.
 b. Bacterial evasion of host defense mechanism.
 10.1.3 Protozoa and diseases.
 10.1.4 Diseases caused by helminthes.

11. Vaccine
 11.1 Active and passive immunization.
 11.2 Designing vaccines for active immunization.
 11.3 Whole organism vaccine.
 11.3.1 Attenuated viral or bacterial vaccines.
 11.3.2 Inactivated viral or bacterial vaccines.
 11.4 Polysaccharide vaccines.
 11.5 Recombinant vector vaccines.
 11.6 DNA vaccines.
 11.7 Synthetic peptide vaccines.
 11.8 Multivalent peptide vaccines.

12. AIDS and other immune-deficiencies.

13. Autoimmunity
 13.1 Organ specific autoimmune diseases.
 13.2 Systemic autoimmune diseases.
 13.3 Proposed mechanisms for induction of autoimmunity.

14. Cancer and immune system

15. Transplantation immunology
16. Cellular energetics

16.1 Electron transport and oxidative phosphorylation.

16.1.1 Proton motive force.

16.1.2 Electron flow.

16.1.3 Shuttling of electrons between ETC.

16.1.4 Reduction potentials of electron carriers.

16.1.5 Pumping protons out of the mitochondrial matrix.

16.1.6 ATP syntheses.

 a. $F_0 F_1$ complex and proton motive force.

 b. Inner mitochondrial membrane transporters and proton motive force.

 c. Regulation of mitochondrial oxidation rate.

16.1.7 Chemiosmotic mechanism of ATP formation and related experiments.

16.2 Photosynthesis.

16.2.1 Photosynthesis and thylakoid membrane.

16.2.2 Stages of Photosynthesis.

16.2.3 Light absorption and charge separation across thylakoid membrane.

16.2.4 Molecular analysis of photosynthesis.

16.2.5 CO_2 metabolism during photosynthesis

CELL & MOLECULAR BIOLOGY

LIST OF PRACTICALS

1. Operation of various microscopes

 1.1 Use of phase contrast.

 1.2 Use of fluorescence microscope - nucleic acid by Acridine orange/ Ethidium bromide.

 1.3 Use of transmission electron microscope.

 1.4 Use of ocular micrometer: Standardization and measurements of cell height, nuclear diameters and tabular diameters.

 1.5 Use of ocular grid-standardization and counting of cells or nuclei in cross section or epithelium.
2. Preparation of biological tissues and sectioning for:
 2.1 Paraffin wax histology by microtome.
 2.2 Fresh frozen sections by cryostat.
 2.3 Ultrathin sections by ultratome.

3. Cytochemistry
 3.1 Carbohydrate (a) PAS method (b) Alcian blue method.
 3.2 Proteins (a) Mercury bromophenol blue method (b) Ninhydrin method.
 3.3 Lipids (a) Phosphomolybic acid method (b) Copper phthalocynin method.
 3.4 Nucleic acid (a) Feulgen method (b) Methyl green- Pyronil method.

4. Biochemical methods
 4.1 Determination of pK value of buffer.
 4.2 Determination of absorption maximum of a solution.
 4.3 Determination of relationship between absorption and various concentration
 of a solution using a colorimeter spectro colorimeter/spectrophotometer.
 4.4 Preparation of standard curve for proteins, lipids, carbohydrates and enzymes.
 4.5 Determination of optimum concentration of enzyme for kinetic studies.
 4.6 Determination of Michaelis - Menten (KM)and Vmax for an enzyme by
 Thumer’s method.
 4.7 Quantification of enzymes
 4.7.1 By end point techniques as exemplified by alkaline and acid
 phosphatase.
 4.7.2 By substrate – left over technique as exemplified by LDH.
 4.7.3 By turn over number as exemplified by GST.

5. Fractionation
 5.1 Tissue homogenization and fractionation by differential centrifugation for
 isolation of mitochondria, nuclei and cystol and use of marker enzymes for
 assessment of the components.
 5.2 Fractionation of protein, RNA and DNA and their Quantification.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
6. Separation techniques
 6.1 Separation of proteins and DNA by agarose electrophoresis.
 6.2 Separation of proteins and iso-enzymes, on SDS-PAGE and PAGE.
 6.3 Electro-eluting of proteins DNA/RNA from electrophoretic gels.
 6.4 Separation of amino acids by paper chromatography.
 6.5 Separation of phospholipids by TLC.
 6.6 Separation of haemoglobin by column chromatography.

7. Chromosomal techniques
 7.1 Preparation of salivary gland chromosomes from Drosophilax and
 Chironomous larva and stain with acetocarmine/aceto-orcein / Feulgen.
 7.2 Preparation of mammalian chromosomes from bone marrow/ testis and stain
 with Giemsa stain.

8. Immunization techniques
 8.1 Emulsification with Freund’s reagent.
 8.1.1 Preparation of emulsions with syringe method.
 8.1.2 Preparation of emulsion with double- hubbed needle method.
 8.2 Testing type of emulsion.
 8.3 Absorption of soluble proteins on insoluble colloidal carrier.
 8.3.1 Alum precipitates.
 8.3.2 Alum hydroxide adjuvants.

 9.1 Intradermal
 9.2 Subcutaneous.
 9.3 Intramuscular.
 9.4 Intraperitoneal.
 9.5 Intravenous.
 9.6 Foot pad.

10. Bleeding schedules and collection of blood
 10.1 Bleeding from ear.
 10.2 Retro-orbital.
 10.3 Cardiac puncture.
10.4 Branchial vein.
10.5 From external jugular vein.

11. Separation and preservation of serum
11.1 Liquid storage.
 11.1.1 Using preservative.
 11.1.2 Sterilization.
11.2 By freezing.
11.3 By lyophilisation.

12. Isolation of T and B cells from sensitized animals
12.1 From spleen.
12.2 From lymph nodes.
12.3 From human blood-rosette formation with sheep RBC.

13. Purification of antibodies and antigens
13.1 Insolubilization of antibodies an antigenic proteins using gluteraldehydes.
13.2 Immuno-adsorption.
13.3 Dissociation of absorbed material from immune-adsorbents.

14. Quantitation of antibodies
14.1 Percipitation techniques.
14.2 Immuno-diffusion method.
14.3 Immuno-electrophoresis method.

15. Immunoassays: RIA, ELISA

16. Permanent slides (for spotting): Thymus, lymph nodes, spleen, bone marrow, types of cells (squamous, cuboidal, columnar epithelial cells, bold cells, nerve cells, muscle cells, connective tissues of various types, adipose tissues, mitotic & meiotic chromosomes and their different phases cancer cells of various types etc.)

Note: 1. Slides to be submitted from each exercise.
2. It should be ensured that animals used in the practical exercises are not covered under the Wildlife Act 1972 and amendments made subsequently.
SCHEME OF PRACTICAL EXAMINATION

Duration : 5 Hours

1. Exercise on Microtomy Sectioning
2. Exercise on Cytochemistry
3. Exercise on biochemical estimation
4. Exercise on Differential centrifugation/chromatography/electrophoresis
5. Exercise on immunology
6. Exercise on chromosomal preparation
7. Identification and comments (Spots-Eight, 2 marks each)
8. Viva-voce
9. Record+ submission of slides prepared

Max. Marks – 100

Total = 100

CELL & MOLECULAR BIOLOGY

Recommended Books:

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur

3. DEVELOPMENTAL BIOLOGY
PAPER-V: CONCEPTS OF EMBRYOLOGY

Duration : 3 Hours
Max. Marks – 100

1. History/Discoveries
 1.1 Theories of development.
 1.2 Fundamental Problems of Developmental Biology.
 1.3 Scope and application of Developmental Biology.

2. Patterns of reproduction.
 2.1 Asexual; Sexual; Reproductive habits and breeding cycles in Vertebrates.
 2.2 Types of reproductive cycles in mammals.

3. Ovulation and its control.
 3.1 Induced breeding in fish and frog.

4. Cogenesis
 4.1 Differentiation and growth of oocytes.
 4.2 Organization of egg.
 4.3 Cytoplasm and egg cortex.
 4.4 Origin of polarity and symmetry in eggs.
 4.5 Vitellogenesis.
5. Spermatogenesis.
 5.1 Differentiation.
 5.2 Ultrastructure, biochemistry and types of sperms.
 5.3 Capacitation.

6. Fertilization.
 6.1 Biological role of fertilization.
 6.2 Basic requirements of fertilization.
 6.3 Recognition between male and female gametes.
 6.4 Acrosome reaction of sperm.
 6.5 Cortical reaction of egg.
 6.6 Sperm penetration into egg.
 6.7 Prevention of polyspermy.
 6.8 Activation of egg metabolism.
 6.9 Biochemistry of fertilization.
 6.10 Biology and viability of sperms and ova.
 6.11 Activation of gamete metabolism-early and late responses.
 6.12 Parthenogenesis.
 6.13 Artificial insemination.
 6.14 Fusion of genetic material in mammals.
 6.15 Fertilization in vitro.
 6.16 Cultivation and re-implantation and significance of this technique.
 6.17 Control of human fertility.
 6.18 Birth control.
 6.19 Contraception
 6.19.1 Natural.
 6.19.2 Barrier or mechanical contraceptives.
 6.19.3 Method of contraception in human beings.
 6.20 Artificial insemination in cattle.
 6.21 Test tube baby, its advantages and disadvantages.
 6.22 Cryopreservation of human embryos.
 6.23 Gamete intra-fallopion transfer (GIFT).
7. Cleavage:
 7.1 Role of nucleus.
 7.2 Problem of DNA synthesis; energy requirements; biochemical changes; distribution of morphogenetic substances of egg and their role during cleavages.
 7.3 Characteristics and mechanism of cleavages.

8. Early embryonic development in selected non-chordates and chordates (with particular reference to the type of eggs; pattern of cleavages; blastulation; gastrulation; establishment of three germ layers and the basic body plan).
 8.1.1 Coelenterata
 8.1.2 Ctenophora
 8.1.3 Platyhelmenthes
 8.1.4 Annelida
 8.1.5 Mollusca
 8.1.6 Echinodermata
 8.1.7 Insecta

8.2 Chordates (frog, chick and mammals).
8.3 Determination of embryonic axes and cell lineage in mammalian development.

 9.1 Dissociation and re-aggregation of cells.
 9.2 Selective affinities of cells during development.

10. Fate maps
 10.1 Methods of their constructions, utility, comparative topographical relationship of the presumptive areas in early embryos of Amphioxus, Fishes, Amphibian and Birds.

11. Neurulation in Vertebrates
 11.1 Mechanism of neural tubes formation.
 11.2 Segregation of mesodermal and endodermal organ rudiments.

12. Determination
 12.1 Concepts of prospective fates, potencies; progressive determination and differentiation mosaic and regulative eggs-a problem of determination.

[Signature]
Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
13. Restriction of potencies in the germinal layers of amphibians and birds; cytoplasmic
determination of germ cells in nematodes, Drosophila and frog.

14. Cell and tissue interactions in development
 14.1 Primary embryonic induction.
 14.3 Methods of study and analysis of the phenomenon of neutral induction.
 14.4 Heterogenous inductors
 14.5 Chemistry and properties of inducing substances
 14.6 Competence
 14.7 Mechanism and theories of induction
 14.8 Secondary and tertiary inductors
 14.8.1 Concept of organizer.
 14.8.2 Evocation and individuation.
 14.8.3 Trans-determination in insect germinal discs.
 14.8.4 Ectodermal and mesodermal interactions in the morphogenesis of
 limbs in vertebrates.
 14.9 The role of apical ridge.

15. Productive interactions in the morphogenesis and differentiation

16. Origin and development of nerve cells and nerve fibres, computer analysis of
 cellular interactions.

17. Gradients:
 17.1 The concepts; Child’s hypothesis.
 17.2 Metabolic differences in embryonic cell.
 17.3 Biochemical gradients in sea-urchin eggs and their morphogenetic importance.

18. Morphogenetic fields
 18.1 The concepts; Nature and temporal character of fields.
 18.2 Progressive determination within a field.

20. Development of ectodermal organs
 20.1 Brain
 20.2 Neural crest and its derivatives
 20.3 Skin
 20.4 Scale and feather
21. Development of mesodermal organs
 21.1 Heart
 21.2 Kidney
 21.3 Gonads
 21.4 Reproductive ducts
22. Development of endodermal organs
 22.1 Liver
 22.2 Pancreas
 22.3 Thymus
23. Differentiation
 23.1 Definition and biochemical basis of differentiation
 23.2 Structural and biochemical changes during differentiation of Muscle Cartilage, Pigment cells, Lens, Fibres, Mammalian erythroid cells, Epidermis.
 23.3 Concept of stem cells and establishment of tissue specific cell lines
 23.4 Cell division and cyto-differentiation
 23.5 Stability of differentiated state of cells.
 23.6 Chemical control of differentiation.
 23.7 Influence of animalizing and vegetalizing agents on sea urchin.
 23.8 De-differentiation; modulation and metaplasia.
 23.9 Trans-differentiation, influence of hormones on differentiation of tissues and organs.
24. Development of the immune system.
25. Cell, tissue and organ culture
 25.1 Basic requirements.
 25.2 Design of the laboratory.
 25.3 Balanced salt solution.
 25.4 Use of antibiotics.
 25.5 Culture media.
 25.6 Methods of preparation of cell, tissue and organ for cultivation in vitro.
 25.7 Contribution of culture studies in developmental biology.
3. DEVELOPMENTAL BIOLOGY

PAPER-VI: GENES AND DEVELOPMENT

Duration : 3 Hours Max. Marks – 100 Periods : 90

1. Role of cell surface in morphogenesis.
2. Pattern formation.
 2.1.1 General and theoretical aspects of pattern formation.
 2.1.2 Polarity.
 2.1.3 Apical dominance.
 2.1.4 Positional information.
 2.1.5 Pattern formation in limb development in vertebrates.
 2.1.6 Feather pattern in birds and wing pattern in insects.
 2.1.7 Importance of retinoic acid in pattern formation in amphibia and birds.
3. 3.1 Nuclear transplantation in amphibians and mammals.
 3.2 Cloning.
 3.3 Pleuripotency of somatic cells.
4. Role of nucleus and cytoplasm in development.
 4.1 Molecular exchange between, cytoplasm and nucleus.
 4.2 Nuclear control of morphogenesis.
 4.3 Nuclear transplantation between species.
 4.4 Prevention of chromosomal diminution in the germ cells of Ascaris by cytoplasmic determinants.
5. Genetic interaction in cell differentiation.
6. Genetic control of development.
 6.1 At transcriptional level.
 6.2 At translational level.
 6.3 Post-translational control.
 6.4 Epigenetic modification of proteins.
 6.5 Determination of embryonic axis.
 6.6 Segmentation of larval body.
 6.7 Homeotic genes.
7. Function of genes during development transgenic cells and organisms.
 9.1 Changing patterns of tissue specificity of protein synthesis.
 9.2 Embryonic, fetal and adult hemoglobin’s.
 9.3 Differential RNA synthesis.
11. Homeotic mutations
 11.1 Bombyx mori.
 11.2 Bithorax locus in Drosophila.
 11.3 Antepnepedia locus in Drosophila.
 11.4 Relationship of developmental biology with genetics and evolution.
 11.5 Ontogeny and phylogeny.
 11.6 Morphological recapitulation of phylogeny ontogeny.
 11.7 Molecular recapitulation in ontogeny.
 11.8 Urea cycle in vertebrate phylogeny and ontogeny.
 11.9 Arboreal salamanders and frogs without tadpoles heterochrony and morphological adaption.
 11.10 Diversity of modes of reproduction in frogs of temperate and tropical regions.
 11.11 Mechanism of amphibian hetero-chrony.
12. Ectodermal mesodermal interactions in the morphogenesis of limb in vertebrate
 12.1 The role of apical ridge.
 12.2 Specification of the anterior-posterior limb axis.
 12.3 Hox genes.
 12.4 Polarizing zones.
13. Route of cell death in morphogenesis
 13.1 Development of the terapod limb.
 13.2 Cell death in formation of digits and joints.
14. Growth
 14.1 Dynamics of population growth.
 14.2 Isometric and allometric.
14.3 Differential growth.
14.4 Physiological mechanism of growth.

15. Ageing (Senescence)
15.1 Cellular basis of ageing.
15.2 Maximum life span and life expectancy.
15.3 Oxidative damage.
15.4 Mitochondrial genome damage.
15.5 Genetic basis of ageing.
15.6 Telomere shortening.
15.7 Theories of ageing.
15.8 Ageing of cells in vitro.

16. Environmental regulation of animal development
16.1 Abnormal growth (teratomas).
16.2 Teratology-types of abnormalities.
16.3 Genetic effects (pleiotropism, phenocopies, canalization and inborn errors in metabolism).
16.4 Environmental effects.
16.5 Teratogenic agents (drugs, nutritional deficiencies, injections, ionizing radiation).
16.6 Retinoic acid as a teratogen.
16.7 Alcohol as a teratogen.
16.8 General mechanisms and mode of action of teratogen agents.

17. Embryological considerations in teratology.
18. Twinning.
19. Malignancy
19.1 General characteristics and properties of cancer cells including structural and metabolic alterations in these cells.
19.2 Metaplasia and carcinogenic agents.
20. Embryonic adaptations
 20.1 Cleidoic eggs.
 20.2 Development, structure and physiology of extra-embryonic membranes in amniotes.
 20.3 Development, structure and physiology of placenta in Eutherian mammals.

21. Embryonic nutrition
 21.1 Yolk utilization by embryos of invertebrates and vertebrates.
 21.2 Fetal nutrition in mammals.
 21.3 Placental physiology.

22. Metamorphosis
 22.1 Larval forms of non-chordates and chordates and their morphological transformation to adult form.
 22.2 Morphogenetic changes during metamorphosis in insect and their hormonal control.
 22.3 Morphological, biochemical and physiological changes during metamorphosis in amphibians and their hormonal control.

23. Regeneration
 23.1 Definition; characteristic of regeneration and its comparison with ontogenetic development.
 23.2 Distribution of regenerative ability in animal kingdom.
 23.3 Forms and patterns of regeneration.
 23.4 Morphallaxis.
 23.5 Epimorphosis.
 23.6 Regeneration in Hydra.
 23.7 Regeneration in Planaria.
 23.8 Appendage regeneration in arthropods and its relation with moulting and metamorphosis.
 23.9 Heteromorphosis.
 23.10 Autotomy.
 23.11 Regeneration in vertebrates with special reference to morphological and histological study of this phenomenon on.
 23.11.1 Tail regeneration.
 23.11.2 Limb regeneration.
 23.11.3 Wolffian lens regeneration.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
23.12 Sources of cells for regeneration.
23.13 Dedifferentiation.
23.14 Wound healing.
23.15 Role of wound epidermis and the epidermal cap.
23.16 Blastula morphogenesis.
23.17 Distal transformation.
23.18 Role of nerves and hormones.
23.19 Pattern formation in blastula by retinoic acid proximalization.
23.20 Homeotic transformation of tails into limbs.
23.21 Loss of regenerative ability in anuran larvae and adults and experimental attempts to restore it.

24. Liver regeneration in mammals.

PRACTICALS: DEVELOPMENTAL BIOLOGY

1. Detailed study of early embryonic development of a fish, an amphibian, chick and a mammal through preserved materials; whole mounts and serial sections.

2. Study of morphogenesis and histogenesis of some selected organs such as limb, heart, eye, brain, etc. during embryonic and/or larval development of vertebrates through preserved materials whole mounts and sections.

3. Study of morphological and histological developments during tail and limb regeneration in any amphibian.

4. Study of metamorphosis and its endocrine control in an insect and an amphibian.

5. Hypophysectomy in a living frog* or toad*.

6. Microscopic study of sperms and ova of frog* after appropriate staining.

7. Simple experiments on frog* or toad* embryos such as cultivation of parts of embryos in vitro, parabiosis transplantation, implantation, etc.

8. Microtomy of vertebrate embryos and larvae.

9. Alizarine and Victoria blue preparation of a late chick embryo mammalian foetus/a frog* or toad* tadpole.

10. Study of oestrous cycles in a rodent.
11. Simple experiments on chick embryos such as cultivation early embryos in vitro by ring technique, intrablastodemic and chorio-allantotic grafting, demonstration of morphogenetic movement and metabolic gradients, study of cell-death in limbs of chick embryos, influence of teratogenic agents(s) on embryonic development, etc.

12. Simple exercise on preparation of glass instruments; fine agar film stained with vital dyes; culture media such as embryo extract, Plasma clot, etc.

13. Identification and separation of free amino acids in embryonic and larval tissues and organs by paper chromatography.

14. Simple exercises on in vitro cultivation of embryonic tissue and organs by suitable techniques.

Note:

1. *indicates use of softwares.
2. With reference of whole mounts and museum specimens the animal types may be substituted with diagrams/photographs/models etc.
3. It should be ensured that animals used in the practical exercise are not covered under the wild life act 1972 and amendments made subsequently.

Scheme of Practical Exam.

4. ENDOCRINOLOGY

PAPER-V: ENDOCRINE GLANDS

Duration : 3 Hours Max. Marks – 100 Periods : 90

1. Historical background, scope and status of endocrinology 2
2. Endocrine glands: an overview 1
3. Biochemical nature of hormones 2
4. Mechanism of action of hormones 4
5. Study of the following major endocrine glands of vertebrates:
 a) Pituitary: General, developmental and comparative anatomy; functional cytology of the pituitary gland of mammalian and sub-mammalian vertebrates; adenohypophyseal hormones, their chemistry and physiology, chromatophore regulation among vertebrates; neurohormonal peptides; their chemistry and phyletic distribution; formation, storage, release and transport of neurohypophyseal principles; effects of hypophysectomy. 8

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
b) **Thyroid**: General, developmental and comparative anatomy, evolution of thyroidal function, biochemistry, biological action of thyroid hormones and their inter-relationship with other endocrine secretions; effects of thyroidectomy; calcitonin: its chemistry and physiology.

c) **Parathyroid**: General, developmental and comparative anatomy, biochemistry and physiology of the parathyroid hormone; effects of parathyroidectomy.

d) **Pancreas islets**: General, developmental and comparative anatomy; biochemistry and physiology of insulin and glucagon; effects of pancreatectomy.

e) **Adrenal**: General, developmental and comparative anatomy; chromaffin tissue, biochemistry and physiology to catecholamines; the sympathetic-chromaffin complex; steroidogenic tissue: structure and nomenclature of steroid hormones; biochemistry and physiology of adrenal steroids; effects of adrenalectomy.

f) **Pineal**: General, developmental and comparative anatomy; biochemistry and physiology of the pineal principles.

6. **Female reproductive system**: Comparative anatomy and physiology of the mammalian and sub-mammalian ovary and sex accessory structures, ovarian hormones and their functions.

7. **The male reproductive system**: Comparative anatomy and physiology of the mammalian and sub-mammalian testis, secondary sex accessory structures, testicular hormones and their functions, semen and its biochemistry.

8. **The hypothalamo-hypophyseal-gonadal relationship**.

9. **Biology of spermatozoa and ovum**: Structure, development and function.

11. Placenta as an endocrine tissue; foeto-placental unit.

12. Hormonal control of sex differentiation and sex determination.

4. ENDOCRINOLOGY

PAPER-VI: REGULATORY ASPECTS

Duration : 3 Hours Max. Marks – 100 Periods : 90

1. Vertebrate neuroendocrinology: Ultrastructure and function of the neuro-secretory cell, hypothalamo-hypophyseal relationship, hypothalamus in relation to higher nervous centres, other neurosecretory systems in vertebrates, the urophysis, the subcommissural organ and the pineal complex. 10

2. Invertebrate neuroendocrinology: Anatomy and physiology of the endocrine and neuro-endocrine systems of Annelida, Arthropoda and Mollusca. 10

3. Endocrine integration: Diffuse effects of hormones: neoplastic growth; migration in birds and fishes; bird plumage; hibernation; osmoregulation; blood pressure regulation. 10

4. Breeding seasons in vertebrates, evolution of viviparity, induced spawning in fish and frog. 6

5. Hormones and reproductive behaviour. 3

6. Functional aspects of chemical, mechanical and surgical and immunological control of male fertility in laboratory mammals and the human. 12

7. Functional aspects of chemical, mechanical, surgical and immunological control of female fertility in laboratory mammals and human. 12

8. Pheromones: Control of fertility in insects. 3

9. Prostaglandins: Types, chemistry, mechanism of action and effects on mammalian reproduction. 6

10. Hormonal imbalance and major endocrine diseases
 (a) Gigantism.
 (b) Acromegaly.
 (c) Dwarfism.
 (d) Addison’s disease.
 (e) Cushing’s syndrome.
 (f) Goitre.
 (g) Cryptorchidism.
 (h) Hypogonadism.
 (i) Amenorrhoea.
 (j) Diabetes mellitus.
 (k) Tetany.
List of Practicals:

1. Dissection and gross examination of various endocrine glands of representative vertebrates.
2. Microscopical study of various endocrine glands of representation vertebrates through microtechnical procedure.
3. Study of the estrous cycle in laboratory mouse or rat by the vaginal smear Technique.
4. Surgical procedures: Castration, ovarietomy, adrenalectomy, thyroidectomy and hypophysectomy.
5. Bioassays for estrogens, androgens and antiestrogens; the Ascheim Zondek pregnancy test.
6. Biochemical estimations of cholesterol and ascorbic acid content tissue; glycogen content in uterine tissue; fructose in male sex accessory glands.
7. Sperm count and motility.
8. Study of the sex chromatin.
9. Effects of epinephrine on chromatophores in fish.
10. Study of microscopic slides of endocrine and related structures.

Note:

1. **Slides of exercises to be submitted during examination.**
2. **With reference of whole mounts and museum specimens the animal types may be substituted with diagrams/photographs/models etc.**
3. **It should be ensured that animals used in the practical exercise are not covered under the wild life act 1972 and amendments made subsequently.**

SCHEME OF PRACTICAL EXAMINATION AND DISTRIBUTION OF MARKS

Duration : 5 Hours

<table>
<thead>
<tr>
<th>Duration</th>
<th>Max. Marks – 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dissection or surgical procedure.</td>
<td>12</td>
</tr>
<tr>
<td>2. Exercise on bioassay or hormone administration effects.</td>
<td>10</td>
</tr>
<tr>
<td>3. Quantitative estimation of glycogen/cholesterol/ascorbic acid/fructose in a given endocrine tissue</td>
<td>12</td>
</tr>
</tbody>
</table>

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
4. Exercise on sperm count/vaginal cycle/effect of epinephrine on fish chromatophores. 8
5. Microtomy + submission of prepared slides (8+6) 14
6. Identification and comments on the spots (1 to 8) 24
7. Viva-voce 10
8. Class record 10

Total = 100

Recommended Books:
5. ENTOMOLOGY

PAPER-V: MORPHOLOGY AND PHYSIOLOGY

Duration : 3 Hours Max. Marks – 100 Periods : 90

1. Integument: Structure, composition and functions, biochemistry of sclerotization.
2. Functional morphology of head, thorax and abdomen including head segmentation and appendages.
3. Muscular system.
5. Circulatory system: Morphology and physiology including composition of haemolymph.
7. Excretory system: Structure of excretory organs and physiology of excretion.
10. Sense organs: Mechanoreceptors, Chemoreceptors auditory organs, sound and light producing organs, visual organs and physiology of vision.
12. Embryology: Structure of egg, embryonic and postembryonic development, types of larvae, pupae and metamorphosis, role of endocrine in growth and development, diapause, viviparity and parthenogenesis.

5. ENTOMOLOGY

PAPER-VI: SYSTEMATICS, ECOLOGY AND APPLIED ENTOMOLOGY

Duration : 3 Hours Max. Marks – 100 Periods : 90

1. Classification of insects up to orders and suborders, basis and short history of classification. Introduction to primitive insects.
2. Detailed classification of important and selected super families, and families of the following orders- Orthoptera, Isoptera, Hemiptera, Coleoptera, Lepidoptera, Diptera and Hymenoptera.
4. Life cycle of Locusts and Aphids.

6. Ecology of insects
 (a) Effect of physical factors.
 (b) Intra and inter-specific relations.
 (c) Population dynamics.
 (d) Host-plant insect interactions.
 (e) Biochemical adaptations of environmental stress (Metamorphosis; Diapause; Polymorphism etc.)

7. Concept of pest. How and why insects have become pests?

8. Life history, damage caused and control of major pests of
 (a) Cash crop, e.g. sugarcane, tobacco, and mustard.
 (b) Cereal crop e.g. wheat, paddy, millet, maize, sorghum, pulses.
 (c) Pests of vegetables, fruits and oil seed crops.
 (d) Cash fibre crops e.g. cotton, sun hemp etc.
 (e) Pests of medical and veterinary importance with reference to role of WHO and UNICEF. Insect borne diseases (A preliminary idea).
 (f) Storage pests (Stored grains and milled products) with an elementary idea of different types of storage.

9. Insect Control: Basic idea.

10. Various methods of insect control
 (a) Prophylactic and cultural method, Quarantine regulation.
 (b) Physical control.
 (c) Chemical control.
 (d) Biological control
 (e) Insect pest management, its strategies and tools in IPM. Its relevance in insect pest control.

11. Chemistry and mode of action of insecticides
 (a) Inorganic insecticides.
 (b) Organochlorine insecticides
 (c) Organophosphorus compounds and carbonates.
 (d) Insecticides of plant origin.
(e) Synthetic pyrethrins.
(f) Insect growth regulatory compounds.
(g) Microbial insecticides.
(h) Chemosterilant, repellents, antifeedants.
(i) Fumigants and fumigation.

12. Concept I, II and III generation of insecticides

12.1 A brief idea of appliances used for application of insecticides, hazards involved and safe handling of insecticides

12.2 Development of resistance in insects to insecticides.

12.3 Insecticide synergists and antagonists.

12.4 Insecticide formulations and application technology.

12.5 Dynamics of environmental pollution.

12.6 Pesticides: Impact on wildlife and human health (bioaccumulation, biomagnification, biodegradation)

12.7 Microbial and environmental degradation of pesticides.

15. Role of genetics in vector control.

List of Practicals:-

1. Field trips for collection and preservation of insects of various orders.

3. Dissection
 (a) Cockroach: Digestive, nervous, circulatory, reproductive systems and neuroendocrine complex.
 (b) Grasshopper
 (c) Honeybee: Digestive and nervous system.
 (d) White grubs: Nervous system.
 (e) Housefly.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
4. Permanent preparations
 (a) Different types of mouthparts, antennae, legs and wings.
 (b) Sting apparatus of honeybee.
 (c) Pollen basket of honeybee.
 (d) Tympanum and spiracle of grasshopper.
 (e) Whole mounts (wm.) of various small insects.

5. Familiarity with techniques of appliances used for the application of insecticides
 (a) Sprayers including hand sprayers.
 (b) Dusters.

6. Knowledge of rearing insects and maintaining insectary
 (a) Tribolium Sp.,
 (b) Rhizopertha Sp.,
 (c) Heliothis Sp.,
 (d) Corcyra Sp.,
 (e) Callosobruchus Sp.,
 (f) Lasioderme serricorne, mosquito species.

8. Study of prepared slides
 (a) Whole mounts of insects.
 (b) Histology.
 (c) Leg types.
 (d) Antennae types.
 (e) Types of mouthparts.
 (f) Wing types.

10. Study of seasonal abundance of crop-pest in nearby area.

11. Live demonstration of biological control using Coccinella or Chrysopa

12. Role of hormones in metamorphosis (ligature experiment with Housefly larvae).

13. To study antennal grooming in cockroach.

14. To study the blood cells in insects.

15. To study meiosis and polytene chromosomes in insects.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
16. To study the insects infestation in the grains.
17. To study the food preference of *Tribolium* or any other insect.

SCHEME OF ENTOMOLOGY
PRACTICAL EXAMINATION

Duration : 6 Hours

1. Major dissection. 15 (12+3)
2. Minor dissection / Permanent preparation. 5 (4+1)
3. Identification of four insects (A to D) using taxonomic keys 16
4. Exercise on Ecology/Physiology/Behaviour/Bioassay 10
5. Microtomy + submission of slides prepared 10 (7+3)
6. Comment on spots 1 to 8. 24
7. Viva ... 10
8. Record / Field work 10

Total = 100

Recommended Books:

[Signature]
Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
ENVIRONMENTAL BIOLOGY

PAPER-V: ENVIRONMENTAL SCIENCE, ECOLOGICAL PRINCIPLE, WILDLIFE & CONSERVATION BIOLOGY

Duration : 3 Hours Max. Marks – 100 Periods : 90

1. Biomes
 1.1 A-Terrestrial Biomes
 1.1.1 Desert
 1.1.2 Grassland: Prairies & Plains
 1.1.3 Tundra
 1.1.4 A temperate needle leaf forests
 1.1.5 Deciduous and evergreen forests (Broadleaved)
 1.1.6 Tropical moist forest
 1.1.7 Tropical seasonal forest
 1.1.8 Biomes of India
 1.2 Aquatic Ecosystem
 1.2.1 Fresh water and Brackish water ecosystem
 1.2.2 Estuaries and wetland: Transitional communities
 1.2.3 Shoreline and Barrier island
 1.2.4 Oceanic island arid reef

2. Biological Communities
 2.1 Critical factors & Tolerance limits
 2.2 Natural selection, Adaptation and evolution
 2.3 Ecological niche

3. Species interactions
 3.1 Predation
 3.2 Competition
 3.3 Symbiosis

4. Community Dynamics
 4.1 Productivity
 4.2 Abundance and diversity

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
4.3 Complexity & connectedness
4.4 Resilience & diversity
4.5 Community structure
4.6 Edges and boundaries

5. Communities in transition
5.1 Ecological succession
5.2 Introduced species and community change

6. Restoration Ecology
6.1 Natural
6.2 Restoring keystone species and ecological process
6.3 Mitigation and replacement
6.4 Creating an artificial ecosystem

7. Conservation of biodiversity
7.1 Concept of biodiversity
7.2 Causes of loss of biodiversity
7.3 Productivity and diversity
7.4 Conversion methods In-situ and Ex-situ
7.5 Biodiversity conversion methods: Gene bank, intellectual property right and bio-safety protocol

8. Population dynamics
8.1 Dynamics of population growth
 8.1.1 Exponential growth & doubling times
 8.1.2 Biotic potential
 8.1.3 Catastrophic declines and population oscillation
 8.1.4 Growth to a stable population
 8.1.5 Strategies of population growth
8.2 Factors that increase or decrease population
 8.2.1 Natality, fecundity & fertility
 8.2.2 Immigration
 8.2.3 Mortality and survivorship
 8.2.4 Age structure

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
8.2.5 Emigration

8.3 Factors: Regulate population growth
8.3.1 Density independent factors
8.2.3 Density dependent factors

9. Methods of population estimations of animal
9.1 Census
9.2 Sampling
9.3 Indices, manipulation of indices
9.4 Transect estimates
9.5 Arial Survey
9.6 Belt transect estimate
9.7 Line Transect estimate
9.8 Mark recapture estimates

10. Restoration of wildlife populations by reintroduction
10.1 Captive breeding
10.2 Soft and hard release
10.3 Management of endangered species-reasons to preserve them
10.4 Human factors leading to extermination/extinction of species, characteristics of endangered species.

11. Habitat analysis and evaluation
11.1 Reconnaissance type evaluation of habitat
11.2 Permanent condition trend transects vegetative analysis
11.3 Forest range evaluation
11.4 Wetland evaluation
11.5 Wildlife evaluation

12. Environmental monitoring
12.1 Physicochemical and biological monitoring
12.2 Biological indicators of environmental changes
12.3 Physiological adaptations of animals to their environment, effects of temperature, current, pressure
12.4 Osmoregulation, aestivation, mimicry, camouflage, bioluminescence, parasitism, eco-location, migration, pheromones

13. Environmental degradation, role of men in changing the environment

 14.1 Wildlife protection legislation acts and laws in India
 14.2 Environmental conservation ethics.

15. Impact of tourism related activities on environment.
 15.1 Basic principles of ecotourism
 15.2 Ecological and conservation aspects of tourism
 15.3 Island ecology and tourism
 15.4 Effect of tourism related developments on ecology
 15.5 Pollution related to tourism
 15.6 Disposal of solid and liquid waste from tourist destination

16. Wildlife techniques-radiometry, photographic identification of animals etc.

17. Wildlife of India-reserves, management, diversity, special protection programmes.

6. ENVIRONMENTAL BIOLOGY

PAPER-VI: ECOTOXICOLOGY, ENVIRONMENTAL MICROBIOLOGY AND BIOTECHNOLOGY

Duration : 3 Hours Max. Marks – 100 Periods : 90

1. Environmental Health and Toxicology
 A. Types of Environmental Hazards
 1. Infectious organisms
 2. Chemicals (Pesticides, metals, solvents)
 3. Radiation
 B. Movement, distribution and fate of toxins
 1. Bioaccumulation
 2. Biomagnifications
 3. Biotransformation (metabolic degradation and excretion)
 C. Carcinogenesis, genetic toxicology, developmental toxicology and wildlife toxicology
2. Measuring toxicity
 A. Animal testing:
 (a) Acute, sub chronic and
 (b) Chronic
 (c) GLP
 B. Environmental impact assessment with special reference to biotic environment
 C. Risk assessment
 D. Statistical analysis of data

3. Pollution
 A. Air
 • Natural sources of air pollution
 • Human caused air pollution
 • Acid rain
 • Climate: Topography and atmospheric process
 • Global warming: The green house effect, green house gases, potential effect of global warming
 • Control of air pollution
 • Ozone depletion
 B. Water
 • Types and effects of water pollution
 • Infectious agents
 • O₂ demanding waters
 • Plant nutrients and cultural eutrophication
 • Toxic inorganic and organic materials
 • Human waste disposal
 • Waste water treatment

4. Biogeochemical cycling
 • Carbon cycle
 • Nitrogen cycle
 • Sulfur cycle
5. Biodeterioration Control and Soil, Waste, and Water Management
 - Control of biodeterioration
 - Management of agricultural soils
 - Treatment of solid waste
 - Treatment of liquid waste

6. Microbial Interaction with Xenobiotic and Inorganic Pollutants
 - Persistence and biomagnifications of xenobiotic molecules
 - Polychlorinated biphenyls and dioxins
 - Synthetic polymers
 - Microbial interaction interactions with some inorganic
 - Acid mine drainage
 - Microbial conversions of nitrate
 - Microbial methylations
 - Microbial accumulation of heavy metals and radio nuclides

7. Biodegradability testing and monitoring the bioremediation of xenobiotic pollutants.
 - Biodegradability and ecological side effect testing
 - Biosensor detection of pollutants
 - Bioremediation
 - Environmental modification for bioremediation
 - Microbial seeding and bioengineering approaches to the bio remediation of pollutants
 - Bioremediation of marine oil pollutant
 - Bioremediation of air pollutants

 - Recovery of metals
 - Recovery of petroleum
 - Production of fuels
• Production of microbial biomass
• Single-cell protein production

9. Microbial Control of Pests
• Controlling pest populations of plants and animals
• Microbial controls of other animal pests
• Microbial control of weeds and cyanobacterial blooms
• Genetic engineering in biological control
• Frost protection
• Bacillus thuringiensis pesticides
• Other applications

PRACTICAL EXERCISES

Paper-I

1. Visit to at least 3 biomes of India for the detail study: Student should submit the report on the study covering major fauna, flora and geography.

2. Determination of population density

4. Visit to some of the few following natural habitats and wildlife sanctuaries desert, mountain range, wetland, coastal habitat, forest wildlife sanctuaries of India and especially Rajasthan. (students are required to submit the joint report on the field visits undertaken by them).

5. Identification of mammalian species using hair imprinting, electrophoresis to identify the species of wildlife, collection of molts of birds.

8. Collection of fecal matter samples of herbivore from wildlife habitat to study the parasitic load.

10. Study of herd structure of herbivore population.

11. Study of hierarchy in monkey population.
Paper-II

1. Water analysis for fresh and waste water for physicochemical properties and planktons.
2. Air quality monitoring.
3. Bioassay of polluted water using microbes or any other higher animal (fish).
4. Pesticide residue analysis using GC and TLC techniques.
5. Water pollution detection (microbial).
6. Trips to natural habitat and manmade habitats to study the human impact on environment.
7. Project work.
8. Electrophoretic analysis of proteins.
9. Enumeration and isolation of soil microorganisms agar plate technique, bacteria, fungi and protozoa.
10. Bacterial examination of water for portability, microorganism, E-coli, staphylococci faecalis as indicators of pollution. MPN index- IMVIC test-Endo agar.
11. Testing of water/soil/sweage for physicochemical parameters including COD and BOD.
12. Field trip to ponds/coastal/other treatment (water or industrial water) plants. Report to be submitted.

Note:
1. Slides to be submitted from the exercises.
2. With reference of whole mounts and museum specimens the animal types may be substituted with diagrams/photographs/models etc.
3. It should be ensured that animals used in the practical exercise are not covered under the wild life act 1972 and amendments made subsequently.

PRACTICAL EXAMINATION SCHEME

Duration : 6 Hours

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bioassay</td>
<td>5</td>
</tr>
<tr>
<td>2. TLC/ Paper chromatography: Pesticide/Toxicant residue analysis</td>
<td>10</td>
</tr>
<tr>
<td>3. Electrophoresis: Analysis of proteins</td>
<td>10</td>
</tr>
</tbody>
</table>

Max. Marks – 100

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
4. Bacterial examination of water (MPN index/IMVIC tests/Microbiological exercise agar plate technique) 10
5. Water/Waste water analysis for physicochemical properties 10
6. Identification of Zooplanktons 5
7. Determination of population density 5
8. Spotting (1-5) 15
9. Project/Seminar/Report 10
10. Record + submission of slides 5+5
11. Viva-voce 10

Total = 100

Recommended Books

7. FISH BIOLOGY

PAPER-V: FISH BIOLOGY

Duration : 3 Hours

Max. Marks – 100

1. Classification of fishes with special reference to evolutionary trends and adaptations. 3
2. Integument and exoskeleton. 3
3. Fins: Types of fins structure, modifications and functions of fins 3
4. Locomotion: Locomotion muscle, the red (slow) and white (fast) muscle fiber types modes of swimming and hydromechanics of propulsion; role of fins in swimming; significance of swimbladder in swimming; non-swimming locomotion. 5
5. Food, feeding habits and feeding adaptations/behaviour, structure of the alimentary canal and physiology of digestion and absorption. 3
6. Planktons: Classification, common organisms and their importance; algal bloom, nutrient cycle, trophic levels and energy flow. 5
7. Blood vascular system: Structure of the heart; principal blood and circulation of blood (elasmobranch, teleost and Dipnoi) 5

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
8. Gills and aquatic respiration organization of gills in fishes; structure of a typical teleostean gill, physiology of gill respiration; gill ventilation, gill surface area, blood flow through gills, water blood barrier, gas exchange at the gill surface and gas exchange between blood and tissues.

9. Air breathing fishes; causative factors and structural adaptations.

10. Structure and functions of the kidney; nitrogenous and products and pattern of their excretion.

11. Water and electrolyte regulation in marine, fresh water and euryhaline fishes.

12. Structure and functions of the swimbladder.

13. Study of feeding habits of fish through qualitative and quantitative analysis of gut contents of herbivorous carnivorous and omnivorous species.

14. Nervous system: Structure and functions fo the central, peripheral and autonomic nervous systems; anatomy and function of the Mauthner neurons.

15. Structure and functions of the sense organs:
 15.1 Eye; visual pigments and vision
 15.2 Chemoreceptors: Olfactory and gustatory; biological significance of chemoreception.
 15.3 Labyrinth.
 15.4 Mechanoreceptors (lateral line organs)

16. Structure and physiology of the endocrine organs and tissues:
 16.1 Pituitary
 16.2 Thyroid
 16.3 Gonads.
 16.4 Adrenal.
 16.5 Endocrine pancreas.
 16.6 Ultimobranchial.
 16.7 Caudal neurosecretory cells and urophysis.
 16.8 Pineal.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
7. Estimation of fecundity and population dynamics and fishery catches.

8. Growth and age; environmental factors and methods.

9. Crustaceans and Molluscan fisheries (Marine water, Brackish water and Fresh water).

10. Methods of Fishing: Crafts (non-mechanised and mechanised) and gears used in India for fishing; in inland, marine water; recent advances in fishing methods, electrical fishing; light fishing, fish finders (Eco-sounder and sonar) and their use.

11. Transport and preservation of fish: Methods of transport, post mortem changes and rigor mortis in fish; spoilage (bacterial and chemical); fish preservation-handling and cleaning of fresh fish, freezing, quick freezing, use of chemicals and antibiotics irradiation, salting, drying freeze-drying, smoking, canning and pickling.

13. Ecology and Productivity of freshwater lake and perennial fish pond indices of productivity; physical and chemical characteristics of water, nature and fertility of the soil.

14. Environment and fish: Environmental factors (abiotic and biotic), interrelation to the life of fishes; pollution of ecosystems sources of pollution and nature of pollutants, effects of pollution on fisheries, legislative and other remedial measures to contain aquatic pollution.

15. Freshwater fish culture in India; Fish seed resources (riverine, bundh breeding, hypophysation) hatching of eggs, hatchlings, ‘hapas’ and different types of hatcheries, management of hatcheries; methods of transporting fish seed, fingerlings and breeders; causes of mortality during transportation and measures for reducing it.

16. Planning and management of freshwater ponds for fish culture (freshwater fish-farming); survey of site, layout, soil and water requirements; preparation of nursery, rearing and stocking ponds; control of predators and weed fishes; liming, and manuring control of aquatic insects and weeds procurement and segregation of fish seed; stocking rates; stocking ratios of different species for composite culture; artificial feed and supplement feeding, harvesting.

17. Culture of Indian major carps (Rohu, Catla and Mrigal), exotic carps, Common carp, grass carp, silver carp and tilapia; composite culture principle, techniques and significance: Wet and dry bundh technique, induced breeding, hypophysation, selective breeding and hybridization.
18. Cold-water culture of trout: Mahseer, culture method and management.

19. Larvivorous fishes and their importance.

20. Nutrition and physiological energetic: Nutritional requirement of fish with reference to proteins, lipids, carbohydrates, vitamins and minerals; essential amino acids and essential fatty acids; energy requirements; food conservation, efficient energy budgets.

21. Fish as food: Biochemical composition of raw fish; factors affecting biochemical composition of fish; nutritive value of raw and preserved fish; poisoning, toxicity and allergies from fish as food; quality control of fish as food.

22. Fisheries education, training and extension in India: Brief information about the objectives and functions of Central Institute of Fisheries Education (Bombay), Central Inland Capture Fisheries Research Institute (Barrackpore), Central Institute of Freshwater Aquaculture (Chennai), National Bureau of Fisheries Genetics Resources (Lucknow), Central Marine Fisheries Research Institute (Cochin), Central Institute of Fisheries Nautical and Engineering Training (Cochin), Central Institute of Fisheries Technology (Cochin) and National Institute of Oceanography (Goa).

List of Practicals Exercises

1. Study of distinguishing features, identification and classification of specimens of important species of fish available in the museum; Collection of local fish fauna and its identification upto the species level using taxonomic keys.

2. Anatomy and Histology:

 (a) Study of anatomy of teleost represented by the catfish *Wallago attu*:

 External anatomy and gills, viscera, alimentary canal and urinogential organs; musculature for gill ventilation, and feeding; eye muscles and their innervation, endoskelton (through dried and alizarin preparation), branchial blood vessels, brain and cranial nerves, swim bladder, Weberian ossicles, membranous labyrinth connections.

 (b) Preparation and study of stained permanent mounts of Ampullae of Lorenzini (from Dasyatis), otolith, scales (Placoid, cycloid and ctenoid), gill filament and olfactory lamella.

 (c) Dissection of air-breathing organs and their blood supply in *Anabas testudineus, Clarias batrachus, Heteropeustes fossilis* and *Channa sp.*

 (d) Study of fish anatomy and histology through available slides.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
3. Preparation of microscopic slides of stained, sections of following organs/tissues structures from an adult teleost for their histological study of liver, intestine, kidney, testis, ovary, gill, pituitary, thyroid tissue, head kidney (for interrenal and chromaffin cells).

4. **Physiology and biochemistry.**

4.1 Study of the effect of epinephrine, NaCl and KCl on fish chromatophores.

4.2 Study of changes in chromatophores of fish kept against white (light) and black (dark) backgrounds for protracted periods.

4.3 Determination of the rate of oxygen consumption (Winkler method) in a water breathing fish at different temperatures.

4.4 Determination of the rate of ammonia and urea excretion in fish.

4.5 Estimation of protein, fat, ash and water contents in fish muscle.

4.6 Study of free amino-acid pool in fish muscle through paper chromatography.

5. **Basic Laboratory Techniques:**

Maintenance of fish in freshwater: Setting up to an aquarium, quality of water in the aquarium and its aeration: Introduction of fish in the aquarium; feeding of fish and management of aquarium.

Ecology: Physico-chemical analysis of water.

Age and growth.

Identification of maturity stages of fish; determination of gonosomatic index; estimation of fecundity; measurement of ova diameter.

Plankton, Benthos and Primary productivity: Collection of plankton and its qualitative and quantitative analysis; identification of common groups of freshwater plankton; collection and analysis of benthos from a freshwater fish pond, identification of common weeds, predatory fishes and harmful insects in a freshwater fish pond; estimation of primary productivity in a freshwater pond or lake by dark and light bottle method.

Identification of important cultivable species of fish, their eggs and principal stages in their life histories.

Induced breeding through hypophysation, dissection, collection and preservation of pituitary gland; preparation of pituitary gland extract; dosage and technique of injecting pituitary gland extract.

\[\text{Signature}\]

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
Water Analysis: determination of water temperature, light, turbidity, dissolved oxygen, dissolved carbon dioxide, ammonia, salinity, alkalinity, nitrates, phosphates, pH, particle size, available nitrogen and free calcium carbonate.

Fish anesthetics and anesthetization; simple surgical procedure (gonadectomy), fish saline.

Fieldwork and study tour
1.1 A visit to a fish farm/fish seed production centre.
1.2 3 to 4 day tour to study various fisheries activities at selected centres/sites.

Note:
1. It should be ensured that animals used in the practical exercise are not covered under the wild life act 1972 and amendments made subsequently.
2. Slides from exercise to be submitted at the time of examination.

PRACTICAL EXAMINATION SCHEME

<table>
<thead>
<tr>
<th>Duration</th>
<th>Max. Marks – 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Hours</td>
<td></td>
</tr>
<tr>
<td>1. Major dissection</td>
<td>10+5=15</td>
</tr>
<tr>
<td>2. Minor dissection/slide preparation/species identification</td>
<td></td>
</tr>
<tr>
<td>3. Identification and comments on spots (1-8)</td>
<td>24</td>
</tr>
<tr>
<td>4. Microtomy procedure and preparation of slides</td>
<td>10</td>
</tr>
<tr>
<td>5. Plankton identification/primary productivity/water analysis</td>
<td>8</td>
</tr>
<tr>
<td>6. Physiology/biochemistry</td>
<td>10</td>
</tr>
<tr>
<td>7. Determination of age/growth/maturity stage/GSI</td>
<td>5</td>
</tr>
<tr>
<td>8. Record/Field work & Slide submission</td>
<td>5+5</td>
</tr>
<tr>
<td>9. Viva-voce</td>
<td>10</td>
</tr>
</tbody>
</table>

Total = 100

Note:
1. Submission of slides from the above exercises
2. With reference of whole mounts and museum specimens the animal types may be substituted with diagrams/photographs/models etc.
3. It should be ensured that animals used in the practical exercise are not covered under the wild life act 1972 and amendments made subsequently.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
Recommended Books

2. Brown, M.E.: The Physiology of Fishes, Vol I & II.

8. RADIATION BIOLOGY

PAPER-V: BASIC OF RADIATION

Duration: 3 Hours
Max. Marks – 100

Periods : 90

1. Atomic Structure
 1.1 Theories of atomic structure.
 1.2 Isotopes, isomers and isobars.
 1.3 Mass Number and Atomic mass.
 1.4 Sub-atomic particles.
 1.5 Excitation and ionization.
 1.6 Nuclear forces and nuclear structure.

2. Types of Radiation.
 2.1 Nuclear Radiation.
 2.2 X-rays-characteristics, production and uses.

3. Radioactivity
 3.1 Natural radioactivity.
 3.2 Artificial radioactivity.
 3.3 Half-life.
 3.4 Natural decay series.
 3.5 Background radiation.

4. LET and RBE
5. Radiation Dosimetry
 5.1 Units of radiation and radioactivity.
 5.2 X-rays dosimetry
 5.3 Radiation weighting factors and equivalent dose.
 5.4 Tissue weighting factor and effective dose.
 5.5 Cumulative doses.
 5.6 External and internal dosimetry.
 5.7 Microdosimetry.
 5.8 Maximum Permissible Dose (MPD)
6. Detection and measurement of radiation
 6.1 Ionization chamber.
 6.2 Scintillation detectors.
 6.3 G.M. counter.
 6.4 Proportional counter.
 6.5 Gamma ray spectrophotometer.
 6.6 Autoradiography, RIA.
7. Radiation chemistry
 7.1 Radiolysis of water.
 7.2 Hydrogen peroxide formation.
 7.3 Reactions in aqueous organic solutions.
 7.4 Direct and indirect effects.
 7.5 Oxygen effect.
8. Sources of Radiation Hazards
 8.1 Natural sources.
 8.2 Artificial sources.
 8.3 Sealed and unsealed sources.
 8.4 External radiation hazards.
 8.5 Internal Radiation hazards.
9. Radiation Monitors
 9.1 Personnel monitoring equipments.
 9.2 Film badge.
3. Acute radiation effects
 3.1 Concept of LD$_{50}$
 3.2 Central nervous system syndrome.
 3.3 Gastro-intestinal syndrome.
 3.4 Bone marrow syndrome.
 3.5 Skin reactions.

4. Delayed effects of radiation
 4.1 Stochastic and deterministic effects.
 4.2 Radiologic aging.
 4.3 Life shortening.
 4.4 Radiation carcinogenesis.

5. Radiation effects on embryo and foetus

6. Radiation immunology
 6.1 Immunity response.
 6.2 Radiation as immunosuppressive agent.
 6.3 Long term changes in the immunological reactivity of the irradiated organisms.

7. Cytogenetic effects of radiations.
 7.1 Chromosomal aberrations.
 7.2 Micronuclei induction.
 7.3 Radiation mutations.

8. Radiation Hormesis.
 8.1 Evolution of current radiation paradigms.
 8.2 Epidemiological evidence.
 8.3 Experimental studies and adaptive response.

9. Radiation hazard evaluation and control
 9.1 Control of external hazards.
 9.2 Control of internal hazards.
 9.3 Exposure rate, constant.

10. Radiation Accidents (special reference to Rajasthan-Pokharan I & II)

11. Radiation safety and regulatory aspects
11.1 Radiographic installations.
11.2 Enclosed installations.
11.3 Field installations.
11.4 Personnel management.
11.5 Source storage facilities.
11.6 Safe work practice.
11.7 Recommendations of National/International statutory bodies.

LIST OF PRACTICAL EXERCISES

Radiation Biology

1. Knowledge and use of: Geiger-Muller counters, Decade Scalar, Scintillation counters (Crystal and Liquid), Survey meter, Single-channel gamma spectrometer, Actigraph system, Cobalt camera, Teflon foil.
2. Finding out the operating voltage of the G. M. tube.
3. Calculation of Inverse Square Law.
4. Determination of the resolving time of the G.M. tube.
5. Absorption of beta and gamma rays.
7. Determination of backscattering factors.
8. Finding out the physical half-life of a given isotope:
 (a) Single isotope method.
 (b) From a mixture of two isotopes.
9. Autoradiography
 (a) Liquid-emulsion method.
 (b) Stripping film method.
10. Histopathological, histochemical and biochemical studies of various tissues after external and internal irradiation.
12. Study of permanently prepared histopathological slides.
13. Decontamination of contaminated material.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
14. Visits to the Radiology Department, S.M.S. Medical College, Jaipur, Rajasthan; Atomic Power Project, Kota and Bhabha Atomic Research Centre, Mumbai.

15. Class Record & Seminar.

Note:
1. Submission of slides from the above exercises
2. With reference of whole mounts and museum specimens the animal types may be substituted with diagrams/photographs/models etc.
3. It should be ensured that animals used in the practical exercise are not covered under the wildlife act 1972 and amendments made subsequently.

SCHEME OF PRACTICAL EXAMINATION

Duration : 6 Hours

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Max. Marks – 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Major exercise (1)</td>
<td>24 marks</td>
</tr>
<tr>
<td>2</td>
<td>Minor exercise (1)</td>
<td>16 marks</td>
</tr>
<tr>
<td>3</td>
<td>Preparation and study of a histopathological slides/histochemical/biochemical estimation of various macromolecules in different tissues (Proteins, Glycogen, Cholesterol, Nucleic acids etc.)</td>
<td>16 marks</td>
</tr>
<tr>
<td>4</td>
<td>Spotting (8)</td>
<td>24 marks</td>
</tr>
<tr>
<td>5</td>
<td>Record & Submission of slides</td>
<td>5+5 marks</td>
</tr>
<tr>
<td>6</td>
<td>Viva-voce</td>
<td>10 marks</td>
</tr>
</tbody>
</table>

Recommended Books

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur