UNIVERSITY OF RAJASTHAN
JAIPUR

FACULTY OF EDUCATION

SYLLABUS

INTEGRATED PROGRAMME OF

B.Sc.-B.Ed. Degree (Four Year)

Annual Scheme

Academic Session 2020-21
Examination B.Sc.-B.Ed. Part – II (2021)
NOTICE

1. Change in syllabi, course rules/regulations, syllabi and books may from time to time, be made by amendment or remaking and a candidate shall, accept in so far as the university determines otherwise comply with any change that applies to years he/she has not completed at time of change.

2. All court cases shall be subject to the jurisdiction of Rajasthan University headquarter Jaipur only and not any other place.
B.Sc B.Ed PART - II

CONTENTS

SCHEME OF EXAMINATION

SYLLABUS

1. GENERAL HINDI (COMPULSORY PAPER)*

2. KNOWLEDGE AND CURRICULUM (COMPULSORY PAPER)

3. LEARNING AND TEACHING (COMPULSORY PAPER)

4. PEACE EDUCATION (GROUP - A)

5. OPTIONAL PAPERGROUP (GROUP - B)
 I. CHEMISTRY
 II. BOTANY
 III. ZOOLOGY
 IV. PHYSICS
 V. MATHEMATICS

Dy. Registrar (Acad.)
University of Rajasthan
JAIPUR
Ordinance and Regulations related to the Integrated B.Sc.B.Ed. Degree

01. The Objective and the Learning outcomes of the Integrated B.Sc.B.Ed. Degree are:

Objectives:

- To promote capabilities for inculcating national values and goals as mentioned in the constitution of India.
- To act as agents of modernization and social change.
- To promote social cohesion, international understanding and protection of human rights and right of the child.
- To acquire competencies and skills needed for teacher.
- To use competencies and skills needed for becoming an effective teacher.
- To become competent and committed teacher.
- To be sensitive about emerging issues such as environment, population general equality, legal literacy etc.
- To inculcate logical, rational thinking and scientific temper among the students.
- To develop critical awareness about the social issues & realities among the students.
- To use managerial organizational and information & technological skills.

Learning outcomes:

1. Competence to teach effectively two school subjects at the Elementary & secondary levels.

2. Ability to translate objectives of secondary education in terms of specific Programmes and activities in relation to the curriculum.

3. Ability to understand children's needs, motives, growth pattern and the process of learning to stimulate learning and creative thinking to faster growth and development.

4. Ability to use-

5. Individualized instruction

6. Dynamic methods in large classes.

7. Ability to examine pupil's progress and effectiveness of their own teaching through the use of proper evaluation techniques.
8. Equipment for diagnosing pupil progress and effectiveness of their own teachings through the use of proper evaluation techniques.
9. Readiness to spot talented and gifted children and capacity to meet their needs.
10. Ability to organize various school programmes, activities for pupil.
11. Developing guidance point of view in educational, personal and vocational matters.
12. Ability to access the all round development of pupils and to maintain a cumulative record.
13. Developing certain practical skill such as:
 a. Black board work
 b. Preparing improvised apparatus
 c. Preparing teaching aids and ICT.
14. Interest and competence in the development of the teaching profession and education.
 Readiness to participate in activities of professional organizations.

Integrated Programme of B.Sc.B.Ed. Degree Shall Consist of

i) First Year B.Sc.B.Ed.
ii) Second Year B.Sc.B.Ed.
iii) Third Year B.Sc.B.Ed.
iv) Final Year B.Sc.B.Ed.

Duration of the Course - Four Years

Examinations after each session in theory papers

Scheme of Examination against each subject separately.

Compulsory Papers:

<table>
<thead>
<tr>
<th>Year</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>I	extsuperscript{st} Year</td>
<td>Gen. English</td>
</tr>
<tr>
<td>II	extsuperscript{nd} Year</td>
<td>Gen. Hindi</td>
</tr>
<tr>
<td>III	extsuperscript{rd} Year</td>
<td>Elementary Computer Application (ICT)</td>
</tr>
<tr>
<td>IV	extsuperscript{th} Year</td>
<td>Environmental Studies</td>
</tr>
</tbody>
</table>

*ELIGIBILITY CRITERION ON PASSING MARKS BUT MARKS SHALL NOT BE INCLUDED IN DIVISION.
Group – A: - Subject Specialisation:

<table>
<thead>
<tr>
<th>Year</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(^{st}) Year</td>
<td>Instructional System & Educational</td>
</tr>
<tr>
<td>II(^{nd}) Year</td>
<td>Peace Education</td>
</tr>
<tr>
<td>III(^{rd}) Year</td>
<td>Guidance and Counselling in School</td>
</tr>
<tr>
<td>IV(^{th}) Year</td>
<td>Physical Education & Yoga</td>
</tr>
</tbody>
</table>

Group-B: Content of Science Subject: - A Student has to opt any three optional subject (papers) from group B which two must be the school teaching subjects.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>I, II & III</td>
</tr>
<tr>
<td>Botany</td>
<td>I, II & III</td>
</tr>
<tr>
<td>Zoology</td>
<td>I, II & III</td>
</tr>
<tr>
<td>Physics</td>
<td>I, II & III</td>
</tr>
<tr>
<td>Mathematics</td>
<td>I, II & III</td>
</tr>
</tbody>
</table>

Group C: Pedagogy of School Subject 08 A/B: Pedagogy of a School Subject II\(^{nd}\) Year and IV\(^{th}\) Year(candidate shall be required to offer any two papers from the following, for part-III&part-IV).

<table>
<thead>
<tr>
<th>Pedagogy of Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedagogy of Chemistry</td>
</tr>
<tr>
<td>Pedagogy of Biology</td>
</tr>
<tr>
<td>Pedagogy of Physics</td>
</tr>
<tr>
<td>Pedagogy of Mathematics</td>
</tr>
<tr>
<td>Pedagogy of General Science</td>
</tr>
</tbody>
</table>
In all the subjects the student has to study a minimum of 12 papers in 1st year, 12 Paper in IIInd Year, 12Paper in IIIrd Year and 7 Paper in IVth Year (Total 43 Papers).

Each theory paper will carry 100 marks and content base paper 05, 06, 07 (G-B) will carry 150 marks. (With practical part). Distribution of marks in mathematics is according to their marking scheme in page no.7.

Scheme of Instruction for B.Sc.B.Ed Courses

Details of course and scheme of study, titles of the papers, duration etc. for B.Sc.B.Ed Course are provided in Tables given below:-

Four Years Integrated Course

Scheme of B.Sc.B.Ed. 1st Year

<table>
<thead>
<tr>
<th>Theory Paper</th>
<th>Course Code</th>
<th>Title of the Paper</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>B.Sc.B.Ed. 01</td>
<td>Gen. English(Compulsory)*</td>
<td>100 - - 100</td>
</tr>
<tr>
<td>II</td>
<td>B.Sc.B.Ed. 02</td>
<td>Childhood and Growing Up</td>
<td>80 20 - 100</td>
</tr>
<tr>
<td>III</td>
<td>B.Sc.B.Ed. 03</td>
<td>Contemporary India and Education</td>
<td>80 20 - 100</td>
</tr>
<tr>
<td>VIII</td>
<td>B.Sc.B.Ed. 04 (G-A)</td>
<td>Instructional System & Educational Evaluation</td>
<td>80 20 - 100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V</th>
<th>B.Sc.B.Ed 05, 06 & 07 (G-B)</th>
<th>Content (Select any Three)</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td></td>
<td>1. Chemistry (I,II,III)</td>
<td>33+33+34 50 150</td>
</tr>
<tr>
<td>&</td>
<td></td>
<td>2. Botany (I,II,III)</td>
<td>33+33+34 50 150</td>
</tr>
<tr>
<td>VII</td>
<td></td>
<td>3. Zoology (I,II,III)</td>
<td>33+33+34 50 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Physics (I,II,III)</td>
<td>33+33+34 50 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Mathematics (I,II,III)</td>
<td>40+40+40 30 150</td>
</tr>
</tbody>
</table>

*ELIGIBILITY CRITERION ON PASSING MARKS BUT MARKS SHALL NOT BE INCLUDED IN DIVISION.

[Signatures]

District Govt. of Rajasthan

AIPUR
Four Years Integrated Course
Scheme of B.Sc.B.Ed. IInd Year

<table>
<thead>
<tr>
<th>Theory Paper</th>
<th>Code</th>
<th>Course Code</th>
<th>Title of the Paper</th>
<th>Evaluation</th>
<th></th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>B.Sc.B.Ed. 01</td>
<td>Gen. Hindi (Compulsory)*</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>B.Sc.B.Ed. 02</td>
<td>Knowledge and curriculum</td>
<td>80</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>B.Sc.B.Ed. 03</td>
<td>Learning and Teaching</td>
<td>80</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td>B.Sc.B.Ed. 04</td>
<td>Peace Education (G-A)</td>
<td>80</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>B.Sc.B.Ed 05</td>
<td>Content (Select any Three)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI & VII</td>
<td></td>
<td>B.Sc.B.Ed 06</td>
<td>1. Chemistry (I,II,III)</td>
<td>33+33+34</td>
<td></td>
<td>50</td>
<td>-</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Botany (I,II,III)</td>
<td>33+33+34</td>
<td></td>
<td>50</td>
<td>-</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Zoology (I,II,III)</td>
<td>33+33+34</td>
<td></td>
<td>50</td>
<td>-</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Physics (I,II,III)</td>
<td>33+33+34</td>
<td></td>
<td>50</td>
<td>-</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. Mathematics (I,II,III)</td>
<td>40+40+40</td>
<td></td>
<td>30</td>
<td>-</td>
<td>150</td>
</tr>
<tr>
<td>VIII</td>
<td></td>
<td>B.Sc.B.Ed</td>
<td>OPEN AIR / SUPW CAMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1. Community Service</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Survey (Based on social and educational events)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Co-Curricular Activities</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Health and Social awareness programme (DISASTER MANAGEMENT AND CLEANLINESS)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELIGIBILITY CRITERION ON PASSING MARKS BUT MARKS SHALL NOT BE INCLUDED IN DIVISION.
Four Years Integrated Course
Scheme of B.Sc.B.Ed. IIIrd Year

<table>
<thead>
<tr>
<th>Theory Paper</th>
<th>Course Code</th>
<th>Title of the Paper</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>B.Sc.B.Ed. 01</td>
<td>Elementary Application (ICT), (Compulsory)*</td>
<td>60 - 40 (30+10)</td>
</tr>
<tr>
<td>II</td>
<td>B.Sc.B.Ed. 02</td>
<td>Language Across the Curriculum</td>
<td>80 20 - 100</td>
</tr>
<tr>
<td>IV</td>
<td>B.Sc.B.Ed-04 (G-A)</td>
<td>Guidance and Counseling in School</td>
<td>80 20 - 100</td>
</tr>
<tr>
<td>V</td>
<td>B.Sc.B.Ed. 05, 06 & 07 (G-B)</td>
<td>Content (Select any Three)</td>
<td>33+33+34 50 150</td>
</tr>
<tr>
<td>VI & VII</td>
<td>B.Sc.B.Ed. 05, 06 & 07 (G-B)</td>
<td></td>
<td>33+33+34 50 150</td>
</tr>
<tr>
<td>VIII</td>
<td>08(a,b)</td>
<td>Pedagogy of a School Subject (Candidate should opt any two school subject from the following i.e. one school subject for part - 3 and other school subject for Part - 4)</td>
<td>80 20 100</td>
</tr>
<tr>
<td>Practicum</td>
<td></td>
<td>Special Training Programme</td>
<td>10 50 85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Micro Teaching</td>
<td>10 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Practice Lesson</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Observation Lesson</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Technology Based</td>
<td>05</td>
</tr>
</tbody>
</table>
Lesson
- Criticism Lesson
- Attendance
/Seminar/ Workshop

<table>
<thead>
<tr>
<th>Final Lesson</th>
<th>100</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>950</td>
</tr>
</tbody>
</table>

*ELIGIBILITY CRITERION ON PASSING MARKS BUT MARKS SHALL NOT BE INCLUDED IN DIVISION.

Four Years Integrated Course
Scheme of B.Sc.B.Ed. IVth Year

<table>
<thead>
<tr>
<th>Theory Paper</th>
<th>Course Code</th>
<th>Title of the Paper</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>External</td>
</tr>
<tr>
<td>I</td>
<td>B.Sc.B.Ed. 01</td>
<td>Environmental Studies (Compulsory)*</td>
<td>100</td>
</tr>
<tr>
<td>II</td>
<td>B.Sc.B.Ed. 02</td>
<td>Creating and inclusive school</td>
<td>80</td>
</tr>
<tr>
<td>III</td>
<td>B.Sc. B.Ed. 03</td>
<td>Understanding Disciplines and Subject</td>
<td>80</td>
</tr>
<tr>
<td>IV</td>
<td>B.Sc.B.Ed. 04(G-A)</td>
<td>Physical Education & Yoga</td>
<td>80</td>
</tr>
<tr>
<td>V</td>
<td>B.Sc.B.Ed. 05</td>
<td>Gender, School and Society</td>
<td>80</td>
</tr>
<tr>
<td>VI</td>
<td>B.Sc.B.Ed. 06</td>
<td>Assessment for Learning</td>
<td>80</td>
</tr>
<tr>
<td>VIII</td>
<td>B.Sc.B.Ed. 08(a,b)</td>
<td>Pedagogy of a School Subject (Candidate should opt any two school subject from the following i.e. one school subject for part - 3 and other school subject for Part - 4)</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Mathematics</td>
<td></td>
</tr>
</tbody>
</table>

10
<table>
<thead>
<tr>
<th>Practicum</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Practice teaching</td>
<td>50</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>2. Block Teaching (Participation in School Activities Social Participation in Group)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Report of any feature of school / case study/action research</td>
<td>20</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>4. Criticism Lesson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Lesson</td>
<td>100</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

ELIGIBILITY CRITERION ON PASSING MARKS BUT MARKS SHALL NOT BE INCLUDED IN DIVISION.

Four Years Integrated Course

Scheme of B.Sc.B.Ed.

Compulsory Papers*

<table>
<thead>
<tr>
<th>Year</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Year</td>
<td>Gen. English</td>
</tr>
<tr>
<td>II Year</td>
<td>Gen. Hindi</td>
</tr>
<tr>
<td>III Year</td>
<td>Elementary Computer Application (ICT)</td>
</tr>
<tr>
<td>IV Year</td>
<td>Environmental Studies</td>
</tr>
</tbody>
</table>

Compulsory Paper

<table>
<thead>
<tr>
<th>Year</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Year</td>
<td>1. Childhood and Growing Up</td>
</tr>
<tr>
<td></td>
<td>2. Contemporary India and Education</td>
</tr>
<tr>
<td>IInd Year</td>
<td>3. Knowledge and curriculum</td>
</tr>
<tr>
<td></td>
<td>4. Learning and Teaching</td>
</tr>
<tr>
<td>IIIrd Year</td>
<td>5. Language Across the Curriculum</td>
</tr>
<tr>
<td>IVth Year</td>
<td>6. Creating and inclusive school</td>
</tr>
<tr>
<td></td>
<td>7. Understanding Disciplines and Subject</td>
</tr>
<tr>
<td></td>
<td>8. Gender, School and Society</td>
</tr>
<tr>
<td></td>
<td>9. Assessment for Learning</td>
</tr>
</tbody>
</table>

Group – A: - Subject Specialisation:
<table>
<thead>
<tr>
<th>Year</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Year</td>
<td>Instructional System & Educational</td>
</tr>
<tr>
<td>2nd Year</td>
<td>Peace Education</td>
</tr>
<tr>
<td>3rd Year</td>
<td>Guidance and Counselling in School</td>
</tr>
<tr>
<td>4th Year</td>
<td>Physical Education & Yoga</td>
</tr>
</tbody>
</table>

Group B: (PCB and PCM Group) (Select any three)

1. Chemistry (I, II, III)
2. Botany (I, II, III)
3. Zoology (I, II, III)
4. Mathematics (I, II, III)
5. Physics (I, II, III)

Group C: Pedagogy of School Subject 08 A/B: Pedagogy of a School Subject IIIrd Year and IVth Year (candidate shall be required to offer any two papers from the following, for part-III & part-IV).

- Pedagogy of Chemistry
- Pedagogy of Biology
- Pedagogy of Physics
- Pedagogy of Mathematics
- Pedagogy of General Science

- In all the subjects the student has to study a minimum of 12 papers in 1st year, 12 Paper in IIInd Year, 12Paper in IIIrd Year and 7 Paper in IVth Year (Total 43Papers).
- Each theory paper will carry 100 marks and content base paper 05, 06, 07 (G-B) will carry 150 marks. (With practical part). Distribution of marks in mathematics is according to their marking scheme in page no.7.

Scheme of Instruction for B.Sc. B.Ed Courses

Details of courses and scheme of study, titles of the papers, duration etc. for B.Sc-.B.Ed Courses are provided in Tables given below :-
<table>
<thead>
<tr>
<th>Years</th>
<th>Papers</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Year</td>
<td>12 Paper + Practical</td>
<td>600 +150= 750</td>
</tr>
<tr>
<td>II Year</td>
<td>12 Paper + Practical + Practicum + Practicum</td>
<td>600 +150+100= 850</td>
</tr>
<tr>
<td>III Year</td>
<td>12 Paper + Practical + Practicum + Final Lesson</td>
<td>600 +150+ 100 +100 = 950</td>
</tr>
<tr>
<td>IV Year</td>
<td>7 Paper + Practicum + Final Lesson</td>
<td>600+ 100 +100= 800</td>
</tr>
<tr>
<td>Total</td>
<td>43 Papers</td>
<td>2400 +550+200 +200 = 3350</td>
</tr>
</tbody>
</table>

O. 321 The objectives of the practical work prescribed for the Integrated Programme of B.Sc.B.Ed. Degree (Four Year) are follows:

PART II

Practical Work

Objectives:

To develop the ability and self-confidence of pupil teachers:

1. To be conscious of sense of values and need for their inculcation in children through all available means including one's own personal life.
2. Possess a high sense of professional responsibility.
3. Develop resourcefulness, so as to make the best use of the situation available.
4. Appreciate and respect each child's individuality and treat him as independent and integrated personality.
5. Arouse the curiosity and interest of the pupils and secure their active participation in the educative process.
6. Develop in the pupil's capacity for thinking and working independently and guide the pupils to that end.
7. Organize and manage the class for teaching learning.
8. Appreciate the dynamic nature of the class situation and teaching techniques.
9. Define objectives of particular lessons and plan for their achievements.
10. Organize the prescribed subject-matter in relation to the needs, interest and abilities of the pupils.
11. Use the appropriate teaching methods and techniques.
12. Prepare and use appropriate teaching aids, use of the black board and other apparatus and material properly.
13. Convey ideas in clear and concise language and in a logical manner for effective learning.

14. Undertake action research.

15. Give proper opportunity to gifted pupils and take proper care of the back-ward pupils.

16. Co-relate knowledge of the subject being taught with other subjects and with real life situations as and when possible.

17. Prepare and use assignments.

18. Evaluate pupil's progress.

19. Plan and organize co-curricular activities and participate in them.

20. Co-operates with school teachers and administrators and learns to maintain school records and registers.

Practical skill to teach the two school subjects offered under Theory papers VIII A/B and the following:

1. Observation of lesson delivered by experienced teachers and staff of the college.

2. Planning units and lessons.

3. Discussion of lesson plans, unit plans and lessons given (including criticism lesson)

4. Organization and participation in co-curricular activities.

5. Setting follows up assignment.

6. Evaluation in terms of educational objectives use of teachers made tests & administration of standardized tests.

7. Black-board work.

8. Practical work connected with school subjects.

10. Experimental and laboratory work in chemistry, botany, zoology, physics, and mathematics subjects of experimental and practical nature.

11. Study of the organization of work and activities in the school.

12. Observation and assistance in the health education programme.

13. Observation and assistance in the guidance programme.

15. Techniques of teaching in large classes.
O. 322 A candidate has to deliver at least 40 lessons (20 Lessons of one teaching subject in 3rd year & 20 Lessons of other teaching subject in 4th year) in a recognized school under the supervision of the staff of the college shall be eligible for admission to the examination for the degree of B.Sc.B.Ed.

Notes :-

i. Teaching subject means a subject offered by the candidate at his/her running B.Sc-B.Ed. course either as a compulsory subject or as an optional subject provided that the candidate studied it for at least two years. Thus the qualifying subjects like General English, General Hindi, Education and Environment Education. Prescribed for running B.Sc.B.Ed. Course of the University or a subject dropped by candidates at the part I stage of the degree course shall not be treated as teaching subjects.

ii. Only such candidate shall be allowed to offer General Science for the B.Sc B.Ed Examination who had studied Chemistry and any one subject of life science i.e. Biology, Botany or Zoology.

iii. To maintain same sequence of papers (G.A. - IVth, G.B. 05/06/07 papers (Ist, IIInd & IIIrd year) and 8 a/b IIIrd year and IVth year) in the four years B.Sc.B.Ed integrated course, paper no IIIrd in B.Sc.B.Ed IIIrd year and paper no VIIth in B.Sc.B.Ed IVth year were skipped.

O.323 No candidate shall be allowed to appear in the Integrated B.Sc/B.Ed examination I,II,III & IV Year unless he/she has attended (80% for all course work & practicum, and 90% for school internship)

O.324 The examination for Integrated B.Sc.B.Ed. for Four Year shall be in two parts- part 1st comprising theory papers & part 2 practice of teaching in accordance with the scheme of examination laid down from time to time.

O.325 Candidates who fail in Integrated B.Sc.B.Ed examination in part 1or/ part 2 the theory of education may present themselves for re-examination there in at a subsequent examination without attending a further course at an affiliated training college.

Provided that a candidate who fails in any one of the theory papers and secures at least 48% marks in the aggregate of the remaining theory papers may be allowed to reappear in the examination in the immediately following year in the paper in which he/she fails only. He/she shall be declared to have passed if he secures minimum
passing marks prescribed for the paper in which he appeared and shall be deemed to have secured minimum passing marks only prescribed for the paper (irrespective of the marks actually obtained by him) for the purpose of determining his division in accordance with the scheme of examination. The candidate shall have to repeat the whole examination in subsequent year in case he fails to clear the paper in which he failed.

O.326 Candidates who fail in the Integrated B.Sc.B.Ed. examination part 1 and part 2 only in the practice of teaching may appear in the practical examination in the subsequent year provided that they keep regular terms for four calendar months per year and give at least 40 lessons (20 in part 1 & 20 in part 2) supervised lessons.

O.326 A: A candidate who complete a regular course of study in accordance with the provision laid down in the ordinance, at an affiliated teacher’s training college for four academic year but for good reasons fails to appear at the Integrated B.Sc.B.Ed. examination may be admitted to a subsequent examination as an Ex-student as defined in O.325 or O.326 Above.

O.326 B: No candidate shall be permitted to appear as an Ex-student at more than one subsequent examination. The Integrated B.Sc.B.Ed programme shall be of duration of four academic years, which can be completed in a maximum of five years from the date of admission to the Integrated B.Sc.B.Ed. Degree.

Regulation 42 :-

Scheme of Integrated B.Sc.B.Ed Four Year Examination

The Integrated B.Sc.B.Ed. (Four years) will consist of the following components;

Part I- Main theory papers at B.Sc.B.Ed. II, In Integrated B.Sc.B.Ed II Paper nos. are 02, 03 & 04 in each session are of three hours carrying 100 marks (80 for theory + 20 for sessional) each. Compulsory paper *01 of 100 marks and optional Paper 05, 06, 07 (G-B). in each session are three hours carrying 150 marks (100 marks theory 50 marks practical). Distribution of marks in mathematics is according to their marking scheme in page no.7. VIIIth paper practicum carrying 100 marks.

Part II- Practice Teaching - Micro Teaching, Internship, Practice Teaching of 20 weeks (10 at B.Sc.B.Ed Year III & 10 at B.Sc.B.Ed Year IV) Block Teaching, Criticism and Final Lesson in III & IV Year per teaching subject.
Organization evaluation of practice teaching:

1. Every candidate will teach at least 40 lessons (20 in III Year & 20 in IV Year) during practice teaching session. At least ten lessons in each subject should be supervised.

2. 40 (20+20) lessons as desired in the syllabus should be completed as full period class room lesson. Micro teaching lesson to be used in addition to those 40 lessons for developing certain teaching skills.

3. A minimum of ten lessons in each subject will be supervised evaluated by the subject specialist or a team of specialists of the subjects.

4. By and large, the evaluation of the performance in the practical teaching will be based on the last ten lessons in the subject when the student has acquired some competence and skills of teaching.

5. The internal assessment in practice of teaching will be finalized by the principal with the help of members of the teaching staff and the same will be communicated to the university before the commencement of the practical each year.

6. At Integrated B.Sc.B.Ed III Year each candidate should be prepared to teach one lessons at the final practical examination. At the Integrated B.Sc.B.Ed IV Year exam candidate should be prepared to teach two lessons (one in each subject). The external examiners may select at least 10% of the candidates to deliver two lessons in Integrated B.Sc.B.Ed IV Year.

7. There will be a board of Examiners for the external examination for each college which will examine each candidate in at least one lesson and a minimum of 15% in two lessons (one in each of the two subjects).

8. The board of Examination will consist of:

 (a) The principal of the college concerned.

 P ej Jatin
 Dy Registrar (Acad.)
 University of Rajasthan
 JAIPUR
(b) A principal or a senior and experienced member of the teaching staff of another training college, affiliated to University of Rajasthan.

(c) An external examiner from outside the University of Rajasthan or a senior member of the teaching staff of an affiliated training college.

(d) The board as far as possible will represent Social science, language and science.

9. Approximately 50 lessons will be examined by the board each day.

Working out the result and awarding the division:

(1) A candidate in order to be declared successful at the Integrated B.Sc.B.Ed. I, II, III & IV Year Examination shall be required to pass separately in Part I (Theory) and Part II (Practice of Teaching).

(2) For a passing in Part I (Theory) a candidate shall be required to obtain at-least (a) 30 percent marks in each theory paper and sessionals (24 marks out of 80 and 6 marks out of 20); (b) 30% marks in each theory paper and sessional (11 marks out of 35 & 4 marks out of 15) (c) 36 percent marks in the aggregate of all the theory papers.

(3) For passing in Part II (school internship Practice of Teaching) a candidate shall be required to obtain separately at-least-

- 40 percent marks in the external examination.
- 40 percent marks in internal assessment.

(4) The successful candidates at Integrated B.Sc.B.Ed Four Year Examination obtaining total marks will be classified in three divisions and shall be assigned separately in theory and school internship Practice of teaching as follows:

<table>
<thead>
<tr>
<th>Division</th>
<th>Theory</th>
<th>Practice of Teaching</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>60%</td>
<td>60%</td>
</tr>
</tbody>
</table>
II 48% 48%
Pass 36% 40%

The practical work record shall be properly maintained by the college and may be made available for work satisfaction of external examiner in school internship (practice teaching), those are expected to submit a report regarding this separately.
B.Sc.B.Ed Part - II
वि.एस.वि.एड.-01
सामान्य हिंदी

पूर्णक-100

नोट: 36 से कम अंकलाने पर छात्रों को उत्तीर्ण नहीं किया जायेगा। इस प्रश्न-पत्र में प्राप्त अंकों को निर्धारण के लिए तंत्रीजोडायेगा।

अंकविभाग-प्रश्नपत्र में दो भाग होंगे—1. साहित्य खण्ड 2. व्याकरण खण्ड। साहित्य खण्ड में दो भाग होंगे। व्याकरण खण्ड के लिए 50 अंकसमावेश है।

क दो पद्य या पद्य से (प्रत्येक में 5 अंक)
ख दो पद्य या पद्य से (प्रत्येक में 5 अंक)
ग अलोचनात्मक प्रश्नपत्र से (प्रत्येक में 2 अंक)
घ अलोचनात्मक प्रश्नपत्र से (प्रत्येक में 2 अंक)

साहित्य खण्ड—'क' :- पद्य-पद्य की निर्धारित समावेश

गद्द भाग—

1. कहानी—प्रमुखद —बड़े भाई साहब
 विजयदानदेवा-रिकांदरोखीआ

2. संसारण —क-हैयालामिश्र 'प्रभाकर'—बिलास के ज्योति की उन लहरों

3. रेखाचित्र —रामदूर्ल बेनीपुरी—रतिया

4. विज्ञान —गुणाकरमुले— शानिसबेसुन्दरग्राह

5. निवंद —अग्रकंदनहाटा—राजस्थान की सांस्कृतिक धरोहर

6. खंड —शारदजोश—जीपरसवालियों

7. पथवितरण —अनुपमग्रंथ—आजानी खंडेहतालाब

पद्य भाग— (कभीर प्रथमवालीसे सं——व्याससुरवर दास)

1. कभीर —साही सं——गुरुदेवकोरंग— 7,12,26,30
 सुनरकोरंग— 10,17,24,26
 दिशरकोरंग— 2,6,10,18

2. सुप्रसादसूरसागर—सं. डॉ. चौरंदरमय
निबन्ध लेखन— शब्दसीमा 300 शब्द 8 अंक

कायदोलेख— शस्त्रीय—अद्वैतशक्ति पद्म, कार्यालय ज्ञापन,

विज्ञप्ति एवं कार्यालय आदेश, अधिसूचना, पृष्ठांक 4 × 2 = 8 अंक

3. संक्षेपण— 4 अंक

4. पत्रवाण 5 अंक

5. शब्दनिष्ठा— उपसर्ग, प्रत्यय, संधि, समास 5 अंक

6. शब्द तुल्य एवं वाक्य तुल्य 5 अंक

7. गृहर एवं गंगोलीकोंति 5 अंक

8. प्रशिक्षित शब्दवाली 5 अंक

9. शब्द के प्रकार— संज्ञा, सर्दन्याम, विशेषण, क्रिया एवं क्रियाधिशेषण 5 अंक

रामधारी सिंह दिनकर :— विधेय, समर शंकर।

खण्ड— ‘ख’

अवकरण/अवाहर्चिकृत्नी खण्ड

50 अंक

उद्देश संस्थापत्ता पद संख्या 77,79

3. तुलसीदास— विनय पत्रिका, गीतप्रेस, गोवर्धन, पद सं— 87,88,90,156,158

4. गोवर्धन— पदावली सं— 1,3,4,5,10

5. रघुनाथ (दस दोहे) — रघुप्रभावली, संपादक, विद्यांत्रिक मिश्र, गोविन्दजीनी (दोहावली)

186,191,211,212,214,218,219,220,223,224

6. मैथिलीशास्त्र— शनिमुख, हम्सज्ञ लिए शरतें (गीत—सारके के नवमसंग से)

7. चुमिन्त्रांददयन्— नौकाविहार

8. सूर्यकाल्य त्रिशाली नामाला — 1744— वहरोड़ी परमार

9. संचिवादांददहीरान्त्यायात्यायान्यायान्याय— हिस्सेदार

10. रामधारी सिंह दिनकर :— विधेय, समर शंकर।

खण्ड— ‘ख’

व्याकरण/व्यावहारिक हिंदी खण्ड

50 अंक

प्रमुख विषयों का संख्या 21,33

गोकुललीला पद संख्या 55,58

कृष्णलीला पद संख्या 10,28

उद्देश संस्थापत्ता पद संख्या 77,79

प्रमुख विषयों का संख्या 21,33

गोकुललीला पद संख्या 55,58

कृष्णलीला पद संख्या 10,28

उद्देश संस्थापत्ता पद संख्या 77,79

3. तुलसीदास— विनय पत्रिका, गीतप्रेस, गोवर्धन, पद सं— 87,88,90,156,158

4. गोवर्धन— पदावली सं— 1,3,4,5,10

5. रघुनाथ (दस दोहे) — रघुप्रभावली, संपादक, विद्यांत्रिक मिश्र, गोविन्दजीनी (दोहावली)

186,191,211,212,214,218,219,220,223,224

6. मैथिलीशास्त्र— शनिमुख, हम्सज्ञ लिए शरतें (गीत—सारके के नवमसंग से)

7. चुमिन्त्रांददयन्— नौकाविहार

8. सूर्यकाल्य त्रिशाली नामाला — 1744— वहरोड़ी परमार

9. संचिवादांददहीरान्त्यायात्यायान्याय— हिस्सेदार

10. रामधारी सिंह दिनकर :— विधेय, समर शंकर।

खण्ड— ‘ख’

व्याकरण/व्यावहारिक हिंदी खण्ड

50 अंक

1. निबन्ध लेखन— शब्दसीमा 300 शब्द 8 अंक

2. कायदोलेख— शश्कीय—अद्वैतशक्ति पद्म, कार्यालय ज्ञापन,

विज्ञप्ति एवं कार्यालय आदेश, अधिसूचना, पृष्ठांक 4 × 2 = 8 अंक

3. संक्षेपण— 4 अंक

4. पत्रवाण 5 अंक

5. शब्दनिष्ठा— उपसर्ग, प्रत्यय, संधि, समास 5 अंक

6. शब्द तुल्य एवं वाक्य तुल्य 5 अंक

7. गृहर एवं गंगोलीकोंति 5 अंक

8. प्रशिक्षित शब्दवाली 5 अंक

9. शब्द के प्रकार— संज्ञा, सर्दन्याम, विशेषण, क्रिया एवं क्रियाधिशेषण 5 अंक

रामधारी सिंह दिनकर :— विधेय, समर शंकर।

खण्ड— ‘ख’

अवकरण/अवाहर्चिकृत्नी खण्ड

50 अंक

प्रमुख विषयों का संख्या 21,33

गोकुललीला पद संख्या 55,58

कृष्णलीला पद संख्या 10,28

उद्देश संस्थापत्ता पद संख्या 77,79
Knowledge and Curriculum

Objectives
1. To create excellence in the educational system for facing the knowledge of challenges of the twenty first century.
2. To encourage the application of knowledge skills in the Indian educational institutions.
3. To enhance the quality of pre-service and in-service teacher training.
4. To realize the importance of curriculum modification.
5. To provide awareness and understanding of social environment.
6. To transform teacher pupils into a vibrant knowledge-based society.

Unit I: Concept of Knowledge
- Meaning and Nature of knowledge
- Sources of attainment of knowledge in schools with special references of Society, Culture and modernity.
- Distinctions between Knowledge and Skill, Teaching and Training, Knowledge and information, Reason and belief.

Unit II: Facts of Knowledge -
Different facts of knowledge and relationship such as Local and Universal, Concrete and Abstract, Theoretical and Practical, School and Out of School, (With an emphasis on understanding special attributes of school knowledge)

Unit III: Concept of Curriculum
- Philosophical, Psychological, Sociological and Scientific basis of Education with reference of Gandhi, Tagore, Dewey and Plato.
- Difference between curriculum and syllabus.
- Factors Influencing curriculum.
- Various types of curriculum- Subject centered, Experience centered, Activity centered, Child centered, and Craft centered.
Unit-IV Child’s Construction of Knowledge

- Sources of Knowledge: Empirical knowledge Vs Revealed knowledge
- Different kinds of knowledge:
 (a) Disciplinary knowledge: Concepts and Alternative Concepts
 (b) Course content knowledge: Criteria of Selection and Concerns
 (c) Indigenous knowledge Vs Global knowledge
 (d) Scientific knowledge Vs Religious knowledge
- Concepts of Belief, Information, Knowledge and Understanding

Unit V Curriculum Planning and Transaction

- Construction of Curriculum
- Models of Curriculum Development given by Franklin Bobbit, Ralph Tyler, Hilda Taba and Philip Jackson
- Curriculum Transaction: Role of a teacher in knowledge Construction through Dialogue, Challenge and Feedback as a Critical Pedagogue.

Tasks and Assignments
1. Class Test 10 marks
2. Any one 10 Marks
 - How does school knowledge get reflected in the form of curriculum, syllabus and textbooks?
 - Prepare a children’s literature handbook.
 - Seminars, discussions, movie appraisals, group work, field works

References-
9. www.knowlwdgecommission.gov.in
10. www.ncert.nic.in
11. www.takingglobal.org/exprest/article.htm1?cid-178

B.Sc. B.Ed -03
Learning and Teaching

MARGS -100

Objectives:

After completing the course the students will be able:

1. To get acquainted with the concept, principles and nature of teaching and learning.
2. To understand the different learning styles based on the difference of learners.
3. To study the relationship between teaching and learning and the factors which influence learning.
4. To make use of modern information and communication technology to improve teaching-learning process.
5. To understand learning as a process of communication and be aware of various resources available for making it effective.
6. To study and analyze the socio cultural factors influencing cognition and learning.
7. To study and understand learning in constructivist perspective.

[Signature]
8. To get acquainted with professional ethics of teaching profession.

9. To study the new trends and innovations involved in teaching learning process with professional ethics.

Unit I – Learning and Teaching Process
- Relationship between teaching and learning, Resource and their development for promoting teaching – learning process.
- Tradition and changes in view of the learning process a shift from teaching and learning.

Unit II – Source of Effective Teaching Learning
- Effective teaching: Meaning, component and parameters of effective teaching, classroom instruction strategies, Teacher behavior and classroom climate. (Flandres’s interaction analysis system)
- Instructional objectives in terms of Bloom’s taxonomy.
- Programming Learning: Concept, principles and types of programme learning.
- Concept of micro teaching, various teaching skills.

Unit III – Educational Technology
- Educational Technology: Meaning, Importance and Approaches.
- Model of teaching: Meaning, Assumptions and Fundamental elements of a model of a teaching suchman’s inquiry training model.
- Communication: Concept, Elements and Communication skills, Teaching Learning process as the communication.

Unit IV – New Trends in teaching learning due to technological innovation
- Analysis and organization learning in diverse class room: Issues and concerns.
- Team Teaching Cooperative learning and E-learning, E-content, E-magazine, E-Journals, E-Library, Issues and concerns with regard to organize teaching, learning process in a diverse classroom with respect study habits, ability, giftedness and interest of the learner.

Unit V Teaching as profession:
- Ethics of teaching, professional growth of a teacher
- Teacher as a professional practitioner, identification of the performance, competency and commitment area for teacher.
- Need of Professional enrichment of teachers
- Professional ethics and its development

Test and Assignment:-
1. Class Test 10 MARKS
2. Any One 10 MARKS
- Preparation and practical implication of at least two technical learning resources (transparencies, Power Point Slides, Animated Videos)
- Identify the learning need of the learner in diverse class room with regard to their abilities, learning styles, socio cultural difference, learning difficulties and their implication for class room teaching.
- Identify the professional skills for teachers and report any two programmes for professional development of teaching organized by the school/ training college/ any other agencies.
- Conduct an Interview of any two students with multilingual background and identify the problems in teaching learning process.

REFERENCES:

[Signature]
Dy. Registrar (Acad.)
University of Rajasthan
JAIPUR

B.Sc. B.Ed -04 (G-A)

PEACE EDUCATION

OBJECTIVES:

The course will enable the student teachers to –

- to understand the concept of peace education.
- to acquire the knowledge about peaceful mind makes peaceful world.
- To understand the theory and practice of peace education
- To understand the philosophical thoughts for peace.
- To promote awareness about the existence of Conflicting relationships between people, within and between nations and between nature and humanity.
- To create frameworks for achieving Peaceful and Nonviolent societies.

UNIT I Concept of Peace

- Negative peace and Positive peace,
- Negative Peace - Peace as absence of war and abolition of war, as the minimization and elimination of violence, as removal of structural violence,
Peace with Justice, Peace and Nonviolent liberation technique (Satyagraha) and Disarmament.

- Positive peace: Peace as Love, Mutual Aid, Positive Interpersonal relations, Peaceful resolution of Conflict, Peace and Development, Alternative defense, living with nature and preserving Life and Eco system and Holistic Inner and Outer Peace.

Unit 2: Introduction of Peace Education

- Meaning, Concept and need of Peace Education.
- As a universal value
- Aims and Objectives of Peace Education
- Role of Social Agencies: Family, Religion, Mass Media, Community, School, NGO’s, Government Agencies in promoting peace education.
- Current Status of Peace Education at Global Scenario.

Unit 3- Bases of Peace Education

- Becoming peace teacher-acquisition of knowledge, values and attitudes.
- Life Skills required for Peace Education (WHO)
- Areas of Peace Education: Conflict management, Conservation of Environment
- Challenges to Peace- Stress; Conflict, Crimes, Terrorism, Violence and Modernization.
- Strategies and Methods of teaching: Peace Education- Meditation, Yoga, Dramatization, Debate and etc.

UNIT 4. Effective Teaching of Peace

- Peace Education for Life and Life long education, Peace Education and Removing the Bias towards Violence – Correcting Distortions.
- Model of integrated Learning – Transactional Modalities - Cooperative Learning, Group Discussion, Project Work, Role Play, Story Telling, Rational Analytic Method – Case Analysis and Situation analysis,

Unit 5- Transacting Peace Education & Role of Social Agencies:

- Integration of Peace Education through curricular and co-curricular activities
- Role of mass media in Peace Education
- Programmes for Promoting Peace Education – UNESCO

\[\text{Signature}\]

Dy. Engineer (Acad.)
University of Rajasthan
JAIPUR
• Addressing challenges to peace in Multicultural Society.

Tasks and Assignments
1. Class Test 10 marks
2. Any one 10 Marks

• Prepare a Role Play of Great Personalities who worked/ contributed towards Peace.
• Organize an activity in schools to promote Peace.
• Write a report on Gandhi and Peace.
• Write about the contribution of any two Noble prize winners for Peace.
• Prepare an album of Indian Philosophers and write their thoughts on peace.

REFERENCES :-
Scheme:
Max Marks: 150

<table>
<thead>
<tr>
<th>Duration (hrs.)</th>
<th>Max. Marks</th>
<th>Min. Pass Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper I</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>Paper II</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>Paper III</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>Practical</td>
<td>5</td>
<td>50</td>
</tr>
</tbody>
</table>

Note: Ten (10) questions are to be set taking two (02) questions from each unit. Candidates have to answer any 5 questions selecting at least one question from each unit.

CH-201 Paper-I: Inorganic Chemistry
(2 hrs or 3 periods/week)

Unit-I

Chemistry of Elements of First Transition Series:
Characteristic properties of d-block elements. Properties of the elements of the first transition series, their binary compounds and complexes illustrating relative stability of their oxidation states, coordination number and geometry.

Chemistry of Elements of Second and Third Transition Series:
General characteristics, comparative treatment with their 3d-analogues in respect of ionic radii, oxidation states, magnetic behaviour, spectral properties and stereochemistry.

Unit-II

Coordination Compounds:
Werner's coordination theory and its experimental verification, effective atomic number concept, octahedra, nonanelective coordination compounds, isomerism in coordination compounds, valence bond theory of transition metal complexes.

Unit-III

Chemistry of Lanthanide and Actinide Elements:
Electronic structure, oxidation states, ionic radii and lanthanide contraction, complex formation, occurrence and isolation of lanthanide compounds.

General lectures: Chemistry of separation of Np, Pu and Am from L., electronic configuration, oxidation states, magnetic properties, complexation behavior, comparison of lanthanides and actinides, superheavy elements.

Unit-IV

Oxidation and Reduction:
Electrochemical potential data, analysis of redox; electrode stability in water, flame, fume and Poison vaccines. Application of reduced iron in extraction of elements.

Dy. Registrar (Acad.)
University of Rajasthan
Unit-V

Acids and Bases:

Non-aqueous Solvents:
Physical properties of a solvent, types of solvents and their general characteristics, reactions in non-aqueous solvents with reference to liquid NH₃ and liquid SO₂.

CH-202 Paper-II: Organic Chemistry
(2 Hrs. or 3 periods/week)

Unit-I

Electromagnetic Spectrum: An Introduction

Absorption Spectroscopy
Ultraviolet (UV) spectroscopy - Absorption laws (Beer-Lambert Law), molar absorptivity, presentation and analysis of UV spectra, types of electronic transitions, effect of solvents on transitions, effect of conjugation concept of chromophore and auxochrome. Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. UV spectra of conjugated dienes and enones.

Infrared (IR) spectroscopy - Molecular vibrations, Hook's law, selection rules, intensity and position of IR bands, measurement of IR spectrum, fingerprint region, characteristics absorption of various functional groups and interpretation of IR spectra of simple organic compounds.

Unit-II

Alcohols - Classification and nomenclature
Dihydric alcohols - methods of formation, chemical reactions of vicinal glycols, oxidative cleavage (H₂O(1) and H₂O(2)) and pinacol-pinacolone rearrangement
Ethyl alcohol - methods of formation, chemical reactions of glycerol

Phenols

Ethers and Epoxides
Methods of formation, physical properties. Chemical reactions - cleavage and autoxidation Ziegler's method.
Structural identification: Acid and base catalysis, clearing opening of epoxides, orientation of epoxide.
Aldehydes and Ketones
Structure of the carbonyl group. Syntheses of aldehydes from acid chlorides, synthesis of aldehydes and ketones using 1,3-dithianes, syntheses of ketones from nitriles and from carboxylic acids. Physical properties.

Carboxylic Acids
Methods of preparation and chemical reactions of halo acids. Hydroxy acids - malic, tartaric and citric acids.
Dicarboxylic acids: methods of formation and effect of heat and dehydrating agents (succinic, glutaric and adipic acids).

Carboxylic Acid Derivatives
Structure, nomenclature and synthesis of acid chlorides, esters, amides and acid anhydrides. Relative stability of acyl derivatives. Physical properties, interconversion of acid derivatives by nucleophilic acyl substitution.
Preparation of carboxylic acid derivatives: chemical reactions, mechanisms of esterification and hydrolysis (acidic and basic).

Organic Compounds of Nitrogen
Preparation of nitroalkanes and nitroarenes. Chemical reactions of nitroalkanes. Mechanisms of nucleophilic substitution in nitroarenes and their reductions to amines, neutral and alkaline media.
Reductions of amines; electrophilic aromatic substitution in aryl amines, reactions of amines with nitrous acid. Diazotisation and mechanism. Synthetic transformations of aryl diazonium salts, azo-coupling and its applications.
UNIT-I

Thermodynamics - I
Definition of Thermodynamic Terms: System, surroundings, etc. Types of systems, intensive and extensive properties. State and path functions and their differentials. Thermodynamic process, concept of heat and work.
First Law of Thermodynamics: Statement, definition of internal energy and enthalpy, heat capacity, heat capacities at constant volume and pressure and their relationship. Joule's law, Joule-Thomson coefficient and inversion temperature. Calculation of w, q, dU & dH for the expansion of ideal gases under isothermal and adiabatic conditions for reversible process.

UNIT-II

Thermodynamics - II
Concept of Entropy: Entropy as a state function, entropy as a function of V&T, entropy as a function of P&T, entropy change in physical change. Clausius inequality and entropy as a criteria of spontaneity and equilibrium. Entropy change in ideal gases and mixing of gases.
Third Law of Thermodynamics: Nernst heat theorem, statement and concept of residual entropy, evaluation of absolute entropy from heat capacity data. Gibbs and Helmholtz functions: Gibbs function (G) and Helmholtz function (A) as thermodynamic quantities. A & G as criteria for thermodynamic equilibrium and spontaneity, their advantage over entropy change. Variation of G and A with P, V and T.
Chemical Equilibrium: Equilibrium constant and free energy. Thermodynamic derivation of law of mass action, i.e. Chatelier's principle. Reaction Isotherm and reaction isochore. Clapeyron equation and Clausius-Clapeyron equation, applications.

UNIT-III

Phase Equilibria: Statement and meaning of the terms phase, component and degree of freedom, derivation of Gibbs phase rule, phase equilibria of one component system: water, CO₂ and sulphur systems.
Phase equilibria of two component system: solid-liquid equilibria simple eutectic Bi-Cd, Pb-Ag systems. Glucification of lead.
Solid solutions: compound formation with congruent melting point (Mg-Zn) and incongruent melting point (NaCl-H₂O) system. Freezing mixtures acetone-dry ice.
UNIT-IV

Electrochemistry – I
Electrical transport-conduction in metals and in electrolyte solutions, specific conductance and equivalent conductance, measurement of equivalent conductance, variation of equivalent and specific conductance with dilution.
Migration of ions and Kohlrausch law. Arrhenius theory of electrolyte dissociation and its limitations, weak and strong electrolytes. Oswald’s dilution law, its uses and limitations. Debye-Hückel-Onsager’s equation for strong electrolytes (elementary treatment only). Transport number, definition and determination by Hitorf’s method and moving boundary method.
Applications of conductivity measurements:
Determination of degree of dissociation, determination of K_a of acids, determination of solubility product of a sparingly soluble salt. conductometric titrations.

UNIT-V

Electrochemistry – II
Types of reversible electrodes: Gas-metal ion, metal-metal ion, metal-insoluble salt anion and redox electrodes, electrode reactions. Nernst equation, derivation of cell E.M.F. and single electrode potential, standard hydrogen electrode, reference electrodes, standard electrode potential, sign conventions, electrochemical series and its significance.
Electrolytic and Galvanic cells – reversible and irreversible cells, conventional representation of electrochemical cells.
Concentration cell with and without transport, liquid junction potential, application of concentration cells. Valency of ions, solubility product and activity coefficient, potentiometric titrations.
Definition of pH and pK_a, determination of pH using hydrogen quinhydrone and glass electrodes, by potentiometric methods.

Suggested Books:
3. A Text Book of Physical Chemistry: Kundu and Jain.

CH-204 Chemistry Practical (Pass course), Laboratory Course II
(4 hrs or 6 periods/week)

Inorganic Chemistry
(i) Preparation of Standard Solutions
 Dilution – 0.1 M to 0.001 M solutions
(ii) Volumetric Analysis
 a) Determination of acetic acid in commercial vinegar using NaOH
 b) Determination of alkali content in tablet using HCl
 c) Titration of calcium content in chalk + calcium oxalate by permanganate

Dr. Registrar
Academic
University of Rajasthan, Jaipur
(d) Estimation of hardness of water by EDTA
(e) Estimation of ferrous and ferric by dichromate method
(f) Estimation of copper using thiocyanate

(iii) Gravimetric Analysis
 (a) Cu as CuSCN
 (b) Ni as Ni (dimethylglyoxime)

Organic Chemistry

(i) Laboratory Techniques
 A. Thin Layer Chromatography
 Determination of Rf values and identification of organic compounds.
 (a) Separation of green leaf pigments (spinach leaves may be used).
 (b) Preparation and separation of 2,4-dinitrophenylhydrazones of acetone, 2-butanone,
 hexan-2-one and hexan-3-one using toluene and light petroleum (40-60) solvent
 system.
 (c) Separation of a mixture of dyes using cyclohexane and ethyl acetate (8.5 : 1.5)

 B. Paper Chromatography: Ascending and Circular
 Determination of Rf values and identification of organic compounds.
 (a) Separation of mixture of phenylalanine and glycine. Alanine and aspartic acid,
 glycine and glutamic acid. Spray reagent = ninhydrin.
 (b) Separation of a mixture of DL-alanine, glycine and L-Leucine using n-butanol:
 (c) Separation of monosaccharides a mixture of D-galactose and D- Fructose Using

 (ii) Qualitative Analysis
 Identification of two organic compounds (one solid and one liquid) through the
 functional group analysis, determination of melting point, boiling point and
 preparation of suitable derivatives.

Physical Chemistry

(i) Transition Temperature
 a) Determination of the transition temperature of the given substance by thermometric:
 dilatometric method e.g. MnCl₂.4H₂O / SrBr₂.2H₂O
 (ii) Thermochemistry
 a) To determine the solubility of benzoic acid at different temperatures and to determine
 ΔH of the dissolution process.
 b) To determine the enthalpy of neutralization of a weak acid: weak base versus strong
 base/strong acid and determine the enthalpy of ionization of the weak acid / weak
 base.
 (iii) Phase Equilibrium
 a) To study the effect of a solute (e.g. NaCl, succinic acid) on the critical solution
 temperature of two partially miscible liquids (e.g. phenol-water system) and to
 determine the concentration of that solute in the given phenol-water system.
b) To construct the phase diagram of two components, e.g. diphenylamine-2-naphthoquinone system by cooling curve method.

(iv) Distribution law
 a) To study the distribution of iodine between water and CCl₄.
 b) To study the distribution of benzoic acid between benzene and water.

(Instructions to the Examiner)
B.Sc. Part II
CH- 204 Chemistry Practical (Pass course)

Max. Marks: 50
Duration of Exam: 5 hrs.
Minimum Pass Marks: 18

Inorganic Chemistry
Ex. 1. Volumetric Analysis
or
 Gravimetric Analysis as mentioned in the syllabus 16

Organic Chemistry
Ex. 2. Identification of two organic compounds (one solid and one liquid) through the functional group analysis; determination of melting point, boiling point and preparation of suitable derivatives.
or
 Perform one experiment out of the experiments on thin layer and paper chromatography given in syllabus. 12

Physical Chemistry
Ex. 3. Perform one of the physical chemistry experiments as mentioned in the syllabus. 12

Ex. 4. Viva-voce
Ex. 5. Record

Books Suggested (Theory Course):
2. Concise Inorganic Chemistry, J.D. Lee. I.B.S.
5. Inorganic Chemistry, W.W. Porterfield, Addison Wesley
6. Inorganic Chemistry, A.G. Sharpe, I.B.S.
10. Landolt-Börnstein, Inorganic Chemistry 8, de Vries, John Wiley
Books Suggested (Laboratory Courses)

Scheme

Max. Pass Marks: 76

Paper I 3 hrs. duration
Max. Marks: 33

Paper II 3 hrs. duration
Max. Marks: 33

Paper III 3 hrs. duration
Max. Marks: 34

Practical Min. Marks: 18
Max. Marks: 50
4 hrs. duration
3 hours
4 hours

Duration of examination of each theory paper:

Duration of examination of practicals:

Note

1. There will be 5 questions in each paper. All questions are compulsory. Candidate has to answer all questions in the main answer book only.

2. Q No. 1 will have 18 very short answer type Questions (not more than 20 words) of half marks each covering entire syllabus.

3. Each paper is divided into four units. There will be one question from each unit. These Q Nos. 2 to 5 will have internal choice.

Dr. Registrar
Academic
University, Rajasthan, Jaipur
PAPER-1
Molecular Biology and Biotechnology
(3 credits)

Unit-1

Genetic Material: Biological, chemical and physical nature of hereditary material. Structure of DNA and RNA: mRNA, tRNA and rRNA, Watson and Crick model of DNA, Nucleosome model.

DNA replication: Meselson-Stahl experiment of semiconservative replication of DNA; RNA Primers, Okazaki fragments, polymerases, DNA-Protein interactions.

Prevention and repair of DNA damage and repair.

Unit-2

Central dogma of life. Transcription in eukaryotes: role of promoter, gene, pre-mRNA synthesis, pre-mRNA processing, capping, splicing and polyadenylation.

Translation: genetic code, codons, initiation, elongation and termination.

Regulation of gene expression in prokaryotes and eukaryotes: Negative and positive control, attenuation and antitermination. Reverse transcriptase and its application.

Unit-3

Biotechnology: Definition, classification. Basic aspects of Plant tissue culture, Bacterial selective media preparation and axenic culture technique. Concept of cell culture: callus, differentiation and morphogenesis. Micropropagation: Tissue culture and its applications. Basic concept of Protoplast culture, callus culture, Embryo culture and their applications.

Unit-4

Practical (Experiments)
1. Demonstration of principles and uses of nuclear instruments and equipment.
2. Use of a DNA sequencer.
3. Use of a transgenic plant.

Mr. Registrar
Academic
Jastaban, Jaipur
2. Media preparation
3. Aseptic culture technique
4. Explant culture - shoot tip, nodal segment
5. DNA isolation from plant parts
6. Gel electrophoresis technique

Selected Books:

Paper-II
PLANT PHYSIOLOGY AND BIOCHEMISTRY
(2 hrs /week)

Unit-1

Unit-2
Photosynthesis: Pigments, Photosynthetic apparatus, light reaction, photo system I & II, Z scheme, photophosphorylation, C3 (Calvin cycle), C4 cycle, and factors affecting the photosynthesis. Respiration: Aerobic and anaerobic respiration, RQ (Respiratory Quotient), Kreb's cycle, electron transport system, oxidative phosphorylation and factors affecting the process. Fermentation.

Unit-3
Carbohydrates: Introduction, importance, nomenclature, classification, molecular structure & function of mono-, di- and poly-saccharides, their properties, glycosidic linkages and glycoprotein. Polysaccharides: structure, electrochemical properties, peptide bonds, chemical bonds and nomenclature, structure and classification of proteins, physical and chemical properties.

Enzymes: Structure, nomenclature & classification of enzyme. Characteristics of enzymes, mechanism of action, multi-enzyme system, regulation of enzyme activity. Lipids: Importance of fatty acids (saturated and unsaturated), Alpha and Beta oxidation.

Brief introduction and application of secondary metabolites.

Unit-4

Suggested Readings:
Practical Exercises:

1. To determine the osmotic potential of vacuolar sap by plasmolysis method.
2. To study the permeability of plasma membrane using different concentrations of inorganic solvents.
3. To study the effect of temperature on permeability of plasma membrane.
4. To separate chloroplast pigments by solvent method.
5. To separate chloroplast pigments using paper chromatography.
6. To separate amino acids in a mixture by paper chromatography.
7. To prepare the standard curve of protein.
8. To demonstrate the tests for proteins in the unknown samples.
9. To demonstrate the enzyme activity - Catalase, peroxidase and amylase.
10. To demonstrate the tests for different types of carbohydrates and lipids.
11. Assay of growth hormone (auxin, cytokinin, gibberellin).
12. Demonstration of phenomenon of osmosis by use of potato osmometer
13. Demonstrate root pressure
14. To demonstrate rate of transpiration by use of potometers
15. Phloem suction by inverted funnel method. Mohn's experiment
16. To demonstrate anaerobic and aerobic respiration
17. R Q, by Ganong's respirometer

Dr. Registrar
Academic
University of Poona, Pune.

[Signature]
Paper III

Pteridophytes, Gymnosperms & Palaeobotany
(2 hrs./week)

Unit-1

Unit-2
Morphology, anatomy and reproduction of Psilotum, Selaginella, Equisetum and Marsilea.

Characteristics of Gymnosperms, distribution and classification (K.R. Sporne).

Unit-3
Morphology, anatomy, reproduction and life cycle of Cycas, Pinus and Ephedra. Economic importance of Gymnosperms.

Unit-4

Suggested Laboratory Exercises:

1. Study of external morphology, anatomy of vegetative and reproductive parts of Psilotum, Selaginella, Equisetum and Marsilea
2. Study of external morphology, anatomy of vegetative and reproductive parts of Cycas, Pinus and Ephedra
3. Study of fossils and slates of fossils
4. Preparation of charts of geological time scale

Suggested Readings

BOTANY PRACTICAL EXAMINATION B. Sc PART-II

SKELETON PAPER

M.M. 50

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Practical</th>
<th>Regular</th>
<th>Ex NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(a)</td>
<td>Comment on the Tissue culture or Biotechnology technique</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1(b)</td>
<td>Exercise based on molecular biology</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Perform the given physiological experiment and write the principle, procedure, results based on observations and precautions involved.</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Perform the bio-chemical test of the given sample and discuss the observation giving reasons.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Make a suitable preparation of material “A” (Pteridophyte) (vegetative/reproductive part). Draw a labelled sketch. Identify giving reasons.</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Make a suitable preparation of material “B” (Gymnosperm) (vegetative/reproductive part). Draw a labelled sketch. Identify giving reasons.</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Comment upon spouts (1-5)</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>Viva-Voce</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Practical record</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL 50 50

Dy. Registrar (Acad.)
University of Rajasthan
JAIPUR

Signature
ZOOLOGY
B. Sc.-B.Ed. (Part II) - 202

Scheme:
Max. Marks: 100

<table>
<thead>
<tr>
<th>Paper I</th>
<th>3 Hrs duration</th>
<th>33 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper II</td>
<td>3 Hrs duration</td>
<td>33 Marks</td>
</tr>
<tr>
<td>Paper III</td>
<td>3 Hrs duration</td>
<td>34 Marks</td>
</tr>
<tr>
<td>Practical</td>
<td>4 Hrs duration</td>
<td>50 Marks</td>
</tr>
</tbody>
</table>

NOTE:
1. There will be two parts of every theory question paper with a total duration of 3 hours. First part of question paper will comprise of question No. 1 containing 9 (Paper I & II) or 10 (Paper III) very short answer (Maximum 25 words) type questions, each of 1 mark. This part is compulsory to attempt. Questions should be evenly distributed covering entire syllabus.
 Second part of question paper will be of long answer type questions having three sections. There will be total 9 questions (Q. No. 2 to 10) in this part, i.e., three from each unit/section out of which candidate will be required to attempt any 4 questions selecting at least one question from each unit/section. Each question will carry 6 marks.
2. The candidate has to answer all questions in the main answer book only.

PAPER – I: Z-201
STRUCTURE AND FUNCTION OF INVERTEBRATE TYPES

NOTE:
1. There will be two parts of this theory question paper with a total duration of 3 hours. First part of question paper will comprise of question No. 1 containing 9 very short answer (Maximum 25 words) type questions, each of 1 mark. This part is compulsory to attempt. Questions should be evenly distributed covering entire syllabus.
 Second part of question paper will be of long answer type questions having three sections. There will be total 9 questions (Q. No. 2 to 10) in this part, i.e., three from each unit/section, out of which candidate will be required to attempt any 4 questions selecting at least one question from each unit/section. Each question will carry 6 marks.
2. The candidate has to answer all questions in the main answer book only.

Dy. Registrar (Academic-I)
University of Rajasthan
Jalpur
Section - A
Habit, Habitat, Morphology, Structure, Organs and Systems (Locomotion, Digestive, Circulatory, Respiratory, Excretory, Nervous & Reproductive), Life Cycle, *Affinities and *Adaptations.
Note: * indicates whenever required.

Arthropoda: Palaemon (Indian Freshwater Prawn), Scorpion, Periplaneta, Grasshopper, Apis. Onychophora: Peripatus.

Section - B
Habit, Habitat, Morphology, Structure, Organs and Systems (Locomotion, Digestive, Circulatory, Respiratory, Excretory, Nervous & Reproductive), Life Cycle, *Affinities and *Adaptations.
Note: * indicates whenever required.
Mollusca: Pila, Unio, Sepia
Echinodermata: Asterias, Echinus, Cucumaria.
Hemichordata: Balanglossus and its phylogenetic significance

Section - C
Invertebrate Adaptations
1. Salient features of Hemichordata.
2. Evolution of canal system of sponges.
3. Parasitic adaptations in Helminthes.
4. Social organization in termites and honey bees.
5. Direct and indirect development in insects.
7. Crustacean larval & mouth parts of insects.

PAPER - II: Z-202
ANIMAL PHYSIOLOGY AND BIOCHEMISTRY

NOTE:
1. There will be two parts of this theory question paper with a total duration of 3 hours. First part of question paper will comprise of question No. 1 containing 9 very short answer (Maximum 25 words) type questions, each of 1 mark. This part is compulsory to attempt. Questions should be evenly distributed covering entire syllabus. Second part of question paper will be of long answer type questions having three sections. There will be total 9 questions (Q. No. 2 to 10) in this part, i.e., three from each unit / section, out of which candidate will be required to attempt any 4 questions selecting at least one question from each unit/section. Each question will carry 6 marks.
2. The candidate has to answer all questions in the main answer book only.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur

46
Section - A

Animal Physiology with special reference to mammals

1. Physiology of digestion: Various types of digestive enzymes and their digestive action in the alimentary canal.
2. Physiology of blood circulation: Composition and functions of blood; mechanism of blood clotting; heart beat; cardiac cycle; blood pressure; body temperature regulation.
3. Physiology of respiration: Mechanism of breathing; exchange of gases: transportation of oxygen and carbon dioxide in blood; regulation of respiration.
4. Physiology of excretion: Kinds of nitrogenous excretory end products (ammonotelic, uricotelic and ureotelic); role of liver in the formation of these end products. Functional architecture of mammalian kidney tubule and formation of urine; hormonal regulation of water and electrolyte balance (Homeostasis).

Section-B

Regulatory aspects of Animal Physiology

1. Physiology of nerve impulse and reflex action: Functional architecture of a neuron, origin and propagation of nerve impulse, synaptic transmission, reflex arc.
2. Physiology of muscle contraction: Functional architecture of skeletal muscles; chemical and biophysical events during contraction and relaxation of muscle fibers.
3. Types of endocrine glands, their secretions and functions: Pituitary, adrenal, thyroid, pancreas, testis and ovary.
5. Preliminary idea of neurosecretion, hypothalamic control of pituitary function.

Section-C

Biochemistry

1. Carbohydrates: Structure, function and significance; oxidation of glucose through glycolysis, Kreb's cycle and oxidative phosphorylation; interconversion of glycogen and glucose in liver; role of insulin and glucagon.
3. Lipids: Structure, function and significance; Beta-oxidative pathway of fatty acids; brief account of biosynthesis of triglycerides. Cholesterol and its metabolism.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
Paper – III: Z-203
Immunology, Microbiology & Biotechnology

NOTE:
1. There will be two parts of this theory question paper with a total duration of 3 hours. First part of question paper will comprise of question No. 1 containing 10 very short answer (Maximum 25 words) type questions, each of 1 mark. This part is compulsory to attempt. Questions should be evenly distributed covering entire syllabus. Second part of question paper will be of long answer type questions having three sections. There will be total 9 questions (Q. No. 2 to 10) in this part, i.e., three from each unit/section, out of which candidate will be required to attempt any 4 questions selecting at least one question from each unit/section. Each question will carry 6 marks.
2. The candidate has to answer all questions in the main answer book only.

Section - A

Immunology
1. Immunology: Definition, types of immunity: innate and acquired; humoral and cell mediated, Organs of immune system.
2. Antigen and antibody: Antigenicity of molecules, haptens, antibody types.
3. Antigen-Antibody reactions: Precipitation reaction, agglutination reaction, neutralizing reaction, complement and lytic reactions and phagocytosis.
4. Immunity Regulating Cells: Macrophages, lymphocytes (B and T-Types) T-helper cells, T-Killer cells, plasma cells and memory cells.
5. Mechanism of humoral or antibody mediated immunity and cell mediated immunity.

Section - B

Microbiology
2. The Prokaryota (Bacteria): Structural organization:
 (i) Size, shapes and patterns of arrangement.
 (ii) Structural organization: Slime layer (capsule), cell envelopes: cytoplasmic membrane (inner membrane). Cell wall (outer membrane) of Gram-negative and Gram-positive bacteria; mesosomes; cytoplasmic organization; cell projections: flagella and cilia.
3. Genetic material of Bacteria; Chromosome, replication of bacterial DNA.
4. Reproduction in Bacteria: Asexual reproduction, binary fission, budding, endospore formation, exosporus and cyst formation; sexual reproduction, conjugation.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
5. Microbial Nutrition: Culture of bacteria
 a. Carbon and energy source
 b. Nitrogen and minerals
 c. Organic growth factors
 d. Environmental factors: Temperature and pH
6. Bacteria of Medical Importance:
 (i) Gram-Positive
 a. Cocci: Staphylococci, Streptococci
 b. Bacilli: Diphtheria, Tetanus.
 (ii) Gram-Negative
 a. Cocci: Gonorrhea, Meningitis
 b. Bacilli: Diarrhoea
 (iii) Mycobacteria: Tuberculosis, Leprosy

Section - C

Biotechnology

1. Definition, history, scope and application of biotechnology, major areas of biotechnology (microbial, plant and animal biotechnology).
2. Vectors for gene transfer.
3. Basic concepts of animal cell, tissue, organ and embryo culture.
4. Genetic engineering (outline idea only): Applications of genetic engineering, hazards and regulations.
5. Protoplast fusion in prokaryotes and eukaryotes.
6. Recombinant DNA technology; hybridomas and their applications, PCR, DNA finger printing, DNA footprinting. RFLP, RAPD & AFLP, Human genome project.
7. Monoclonal antibodies and their applications.
8. Brief account of cloning: its advantages and disadvantages.
9. Biotechnology in medicine (outline idea only), antibiotics, vaccines, enzymes, vitamins, artificial blood.
10. Environmental Biotechnology (outline idea only): Metal and petroleum recovery, pest control, waste water treatment.
11. Food, drink and dairy biotechnology (outline idea only): Fermented food production; dairy products, wine, beer, vinegar and food preservation.
Practical - Zoology

Min. Marks: 18

I. Study of Museum Specimens:

Cyanophora : Peripatus

Arthropoda :

Limulus, Spider, Scorpion, Centipede, Millipede,
Lepas, Balanus, Squilla, Eupagurus, Crab, Mantis,
Honey-bee, (queen, king, worker) Locust,
Silkworm Moth, Beetle, White grub.

Mollusca :

Chiton, Aplysia, Cypraea, Mytilus, Pearl Oyster,
Dentalium, Loligo, Nautilus.

Echinodermata :

Pentaceros, Echinus, Ophiothrix,
Cucumaria, Antendan.

Hemichordata :

Balanoglossus.

II. Study of Microscopic Slides:

Arthropoda :

V.S. of integument (cuticle): Pediculus, Bedbug,
Termite and its castes, Cyclops, Daphnia,
crustacean larvae (Nauplius, Metanauplius, Zoea,
Mysis, Megalopa, Phyllosoma), statocyst of prawn.

Mollusca :

V.S. of shell, T.S. gill of Pila, T.S. of gill of
Unio, Glochidium larva.

Echinodermata :

Larval forms

III. Anatomy:

Prawn/Squilla :

External features, appendages, alimentary canal and
nervous system; Hastate Plate

Pila :

External features, pallial organs and nervous
system; osphradium, radula.

Syllabus B.Sc-B.Ed [Part-II]

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
15th

80
IV. Study of the Following Through Permanent Slide Preparation:
 (i) Study of different cell types - Blood smear (Wrights or Leishman stain).
 (ii) Osphradium, gill lamella and radula of pila.
 (iii) Statocyst and Hastate plate of Prawn/Squilla

V. Microbiology Immunology and Biotechnology:
 1. Preparation and use of culture media for microbes.
 2. Study of microbes in food materials like curd, etc (Gram +ve & Gram-ve bacteria, Aspergillus, Mucor, Rhizopus, Penicillium, Alternaria and Fusarium).
 3. Educational tour to any Microbiology laboratory/ Dairy/ Food processing factory/ Distillery. Collection of material may also be encouraged wherever possible. Candidates are required to submit a detailed report of the visit.
 4. Antigen-antibody reactions-precipitation, agglutination.

VI. Animal Physiology:
 1. Counting of red and white blood cells in the given blood sample.
 2. Estimation of hemoglobin in the given blood sample.
 3. Estimation of haematocrit value (PCV) in the given blood sample.
 4. Demonstration of enzyme activity (catalase) in liver.
 5. Study of salivary digestion of starch and the effect of heat and alcohol on salivary digestion of starch.

VII. Biochemistry:
 1. Detection of protein, carbohydrate and lipid in the animal tissue/food samples.
 2. Identification of different kinds of mono-, di- and poly-saccharides in the given food samples.
Scheme of Practical Examination Distribution of Marks

<table>
<thead>
<tr>
<th>Time: 4 Hrs.</th>
<th>Min. Pass Marks: 18</th>
<th>Max. Marks: 50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regular</td>
<td>Ex./N.C. Students</td>
</tr>
<tr>
<td>1. Anatomy (any system)</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>2. Permanent Preparation</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3. Exercise in Microbiology/immunology/Biotechnology</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>4. Exercise in Animal Physiology</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>5. Exercise in Biochemistry</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6. Identification and comments on Spots (1 to 8)</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>7. Viva Voce</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8. Class Record</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Notes:

1. Anatomy: Study of systems of the prescribed types with the help of dissection.

2. With reference to microscopic slides, in case of non-availability, the exercise should be substituted with diagrams/photographs.

3. Candidates must keep a record of all work done in the practical class and submit the same for inspection at the time of the practical examination.

4. Mounting material for permanent preparations would be as per the syllabus or as available through collection and culture methods.

5. It should be ensured that animals used in the practical exercises are not covered under the Wildlife Act 1972 and amendments made subsequently.
Recommended Books:

17. Grant: Biology of Developmental System
B.Sc. Pt.-II

1. PHYSICS

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Max. Marks: 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Pass Marks: 36</td>
<td></td>
</tr>
<tr>
<td>Paper I</td>
<td>3 hrs. duration</td>
</tr>
<tr>
<td>Paper II</td>
<td>3 hrs. duration</td>
</tr>
<tr>
<td>Paper III</td>
<td>3 hrs. duration</td>
</tr>
<tr>
<td>Practical</td>
<td>5 hrs. duration</td>
</tr>
</tbody>
</table>

Paper-I: Thermodynamics and Statistical Physics

Work Load: 2 hrs. Lecture A week

Examination Duration: 3 Hrs.

Scheme of Examination: First question will be of nine marks comprising of six parts of short answer type with answer not exceeding half a page. Remaining four questions will be set with each from each of the unit and will be of six marks each. Second to fifth question will have two parts namely (A) and (B) each carrying 3 marks. Part (A) of second to fifth question shall be compulsory and Part (B) of these questions will have internal choice.

Unit-1

Thermodynamics and adiabatic interactions: Thermal interaction; Zeroth law of thermodynamics; System in thermal contact with a heat reservoir (canonical distribution); Energy fluctuations; Entropy of a system in a heat bath; Helmholtz free energy; Adiabatic interaction and enthalpy; General interaction and first law of thermodynamics; Infinities general interaction; Gibbs's free energy; Phase transitions; Clausius Clapeyron equation; Vapour pressure curve; Heat engine and efficiency of engine. Carnot's Cycle; Thermodynamic scale as an absolute scale; Maxwell relations and their applications.

Unit-2

Production of low temperatures and applications: Joule Thomson expansion and J J coefficients for ideal as well as Van der Waals gas, porous plug experiment, temperature inversion. Regenerative cooling. Cooling by adiabatic expansion and demagnetization; Liquid Helium, He-I and He-II superfluidity. Refrigeration through Helium dilution. Quest for absolute zero. Nearest to therm.

The distribution of molecular velocities: Distribution law of molecular velocities, most probable range and r.m.s. velocities; Energy distribution function, diffusion and molecular beam. Experimental verification of the Maxwell velocity distribution: The principle of equipartition of energy.

Transport phenomena: Mean free path, distribution of free paths, coefficients of viscosity, thermal conductivity, diffusion and their interaction.

Unit-3

Classical Statistics: Validity of Classical approximation; Phase space, micro and macro states. Thermodynamic probability, relation between entropy and thermodynamic probability; Maxwell kinetic gas law; Barometric equation; Specific heat capacity of diatomic gas, Free energy of solids.

[Signature]

Dy. Registrar
(Academic)
University of Rajasthan
JAIPUR
Unit-4

Quantum Statistics: Black body radiation and failure of classical statistics; Postulates of quantum statistics, indistinguishability, wave function and exchange degeneracy, a priori probabilities; Bose-Einstein statistics and its distribution function; Planck distribution function and radiation formula; Fermi-Dirac statistics and its distribution function, contact potential, thermoelectric emission; Specific heat anomaly of metals; Nuclear spin statistics (para- and ortho-hydrogen).

Unit-11: Mathematical Physics and Special Theory of Relativity

Work Load: 2 hrs. Lecture / week

Examination Duration: 3 Hrs.

Scheme of Examination: First question will be of nine marks comprising of six parts of short answer type with answer not exceeding half a page. Remaining four questions will be set with one from each of the unit and will be of six marks each. Second to fifth question will have two parts, namely (A) and (B) each carrying 3 marks. Part (A) of second to fifth question shall be compulsory and Part (B) of these questions will have Internal choice.

UNIT-1

Orthogonal curvilinear coordinate system, scale factors, expression for gradient, divergence, curl and their application to Cartesian, circular cylindrical and spherical polar coordinate.

Coordinate transformation and Jacobian, transformation of covariant, contra-variant and mixed tensor; Addition, multiplication and contraction of tensors; Metric tensor and its use in transformation of tensors.

Dirac delta function and its properties.

UNIT-2

Lorentz transformation, Length Contraction, Time Dilation, Mass variation, rotation in space-time like and space like vector, world line, macro-causality.

Four vector formulation, energy momentum four vector, relativistic equation of motion, invariance of rest mass, orthogonality of four force and four velocity, Lorentz force as an example of four force, transformation of four frequency vector, longitudinal and transverse Doppler effect.

Transformation between laboratory and center of mass system, four momentum conservation, kinematics of decay, products of unstable particles and reaction thresholds; Pair production, elastic collision of two particles. Compton effect.

UNIT-3

(a) Transformation of electric and magnetic fields between two inertial frames. Electric field measured in moving frames. Electric field of a point charge moving with constant velocity.

(b) The second order linear differential equation with variable coefficient and singular points, series solution method and its application to the Hermite's, Legendre's and Laguerre's differential equations; Basic properties like orthogonality, recurrence relation, graphical representation and generating function of Hermite, Legendre and Laguerre functions (simple applications).

Dy. Registrar
(Academic)
University of Rajasthan
Jaipur
UNIT-4

Techniques of separation of variables and its application to following boundary value problems:
(i) Laplace equation in three dimensional Cartesian coordinate system—line charge between two parallel plates
(ii) Helmholtz equation in circular cylindrical coordinates—cylindrical resonant cavity
(iii) Wave equation in spherical polar coordinates describes vibrations of a circular membrane
(iv) Diffusion equation in two dimensional Cartesian coordinate system—heat conduction in a thin rectangular plate
(v) Laplace equation in spherical coordinate system—electric potential around a spherical surface.

Paper III: Electronics and Solid State Devices

Work Load: 2 hrs. Lecture/week

Examination Duration: 3 Hrs.

Scheme of Examination: First question will be of ten marks comprising of five parts of short answer type, answer not exceeding half a paper. Remaining four questions will be set with one from each of the unit and will be of six marks each. Second to fifth question will have two parts, namely (A) and (B) each carrying 3 marks. Part (A) of second to fifth question shall be compulsory and Part (B) of these questions will have internal choice.

Unit 1: Circuit Analysis and PN Junctions

Circuit Analysis: Networks—some important definitions, loop and nodal equation based on D.C. and A.C. circuits (Kirchhoff's Laws). Four terminal network: Ampere volt conventions, open, close and hybrid parameters of any four terminal network, input, output and mutual impedance for an active four terminal network. Various circuit theorems: Superposition, Thevenin, Norton, reciprocity, compensation, maximum power transfer and Miller theorems.
PN junction: Charge densities in N and P materials. Conduction by drift and diffusion of charge carriers. PN diode equation, capacitance effects.

Unit 2: Rectifiers and Transistors

Voltage regulation: Voltage regulation and voltage stabilization by Zener diode, voltage multiplier.

Transistors: Notations and volt-ampere characteristics for bipolar Junctions transistor. Concept of load line and operating point Hybrid parameters. CB, CE, CC configurations. Junction field effect transistor (JFET) and metal oxide semiconductor filed effect transistor (MOSFET). Circuit symbols, biasing and volt-ampere characteristics, source follower operation of FET as variable voltage resistor.

Unit 3: Transistor Biasing and Amplifiers

Transistor biasing: Need of bias and stability of Q point, stability factors, and various types of bias circuits—thermal bias stability fixed bias, collector to base feedback bias and four resistor bias.

Dy. Registrar
(Academic)
University of Rajasthan
Jaipur
Amplifiers: Analysis of transistor amplifiers using hybrid parameters and its gain-frequency response. Basic idea of cascade amplifiers, direct coupled and R.C. coupled amplifiers. Amplifier with feedback. Concept of feedback, positive and negative feedback, voltage and current feedback circuits. Advantage of negative feedback; Stabilization of gain; effect of negative feedback on output and input resistance, reduction of nonlinear distortion, effect on gain-frequency response.

Unit 4: Oscillators and Logic Circuits

Logic circuits: Logic fundamentals. AND, OR, NOT, NOR, NAND, XOR gates. Boolean algebra, De Morgan's theorem, positive and negative logic. Logic gates circuit realization using DTL and TTL logic, simplification of Boolean expressions.

Reference Books:

Dy. Registrar
(Academic)
University of Rajasthan
JAIPUR
University of Rajasthan

7. G.K. Mithal, Electronics Devices and Applications

PRACTICAL

Teaching : 4 hrs/week
Practical One-Paper
Min Pass Marks : 18
Max/Max Marks : 50

Note: Total number of experiments to be performed by the students during the session should be 16 selecting any 8 from each section.

Section-A

2. Study of variation of reflection coefficient of plane waves of radiation using torsional wave apparatus.
3. Using platinum resistance thermometer find the melting point of a given substance.
4. Using Newton's rings method find out the wavelength of a monochromatic source and find the refractive index of liquids.
5. Using Michelson's interferometer find out the wavelength of a given monochromatic source (Sodium Light).
6. To determine dispersive power of prism.
7. To determine wave length of sodium light using grating.
8. To determine wave length of sodium light using Bunsen lamp.

9. Determine the thermodynamic constant \(\tau = \frac{C_P}{C_v} \) using Clément's & Desorme's method.
10. To determine thermal conductivity of a bad conductor by Lee's method.
11. Determination of ballistic constant of a ballistic galvanometer.
12. Study of variation of total thermal radiation with temperature.

Section-B

1. Plot thermo emf versus temperature graph and find the neutral temperature (Use breadboard).
2. Study of power supply using two diodes/bridge rectifier with various filter circuits.

Dr. Registrar
Academic
University of Rajasthan, Jaipur

[Signature]
3. Study of half wave rectifier using single diode and application of L and \(\pi \) section filters.

4. To study characteristics of a given transistor PNP/NPN (common emitter, common base and common collector configurations).

5. Determination of band gap using a junction diode.

6. Determination of power factor (cos \(\phi \)) of a given coil using GRO.

7. Study of single stage transistor audio amplifier (variation of gain with frequency).

8. To determine z / r by Thomson's method.

9. Determination of velocity of sound in air by standing wave method using speaker, microphone and GRO.

11. Measurement of capacitance and dielectric constant of a liquid and gas condenser by de Seuys' bridge.
Mathematics
B.Sc.-B.Ed. Part-II 2021

Teaching: 3 Hours per Week per Theory Paper.
2 Hours per Week per Batch for Practical

Examination Scheme:

<table>
<thead>
<tr>
<th>Min. Pass Marks</th>
<th>Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science - 54</td>
<td>150</td>
</tr>
<tr>
<td>Arts - 72</td>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper I</td>
<td>Real Analysis 3 hrs. 40 (Science) 53 (Arts)</td>
</tr>
<tr>
<td>Paper II</td>
<td>Differential Equations 3 hrs. 40 (Science) 53 (Arts)</td>
</tr>
<tr>
<td>Paper III</td>
<td>Numerical Analysis 3 hrs. 40 (Science) 54 (Arts)</td>
</tr>
<tr>
<td>Practical</td>
<td>2 hrs. 30 (Science) 40 (Arts)</td>
</tr>
</tbody>
</table>

Note:
1. Common paper will be set for both the Faculties of Social Science and Science. However, the marks obtained by the candidate in the case of Faculty of Social Science will be converted according to the ratio of the maximum marks of the papers in the two Faculties.
2. Each candidate is required to appear in the Practical examination to be conducted by internal and external examiners. External examiner will be appointed by the University and internal examiner will be appointed by the Principal in consultation with Local Head/Head, Department of Mathematics in the college.
3. An Internal/external examiner can conduct Practical Examination of not more than 100 (Hundred) Candidates.
4. Each candidate has to pass in Theory and Practical examinations separately.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
Paper - I: Real Analysis

Teaching: 3 Hours per Week

Duration of Examination: 3 Hours

Max. Marks: 40 (Science) 53 (Arts)

Note: This paper is divided into FIVE Units. TWO questions will be set from each Unit. Candidates are required to attempt FIVE questions in all taking ONE question from each Unit. All questions carry equal marks.

Unit 1: Real numbers as complete ordered field, Limit point, Bolzano-Weierstrass theorem, closed and Open sets. Concept of compactness and connectedness. Heine-Borel theorem. Holder inequality & Minkowski inequality, Metric space - Definition and examples, Open and Closed sets, Interior and Closure of a set, Limit point of a set in metric space.

Unit 3: Properties of derivable functions, Darboux's and Rolle's theorem. Notion of limit, continuity and differentiability for functions of several variables. The directional derivative, the total derivative, expression of total derivative in terms of partial derivatives.

Unit 5: Sequence and series of functions - Pointwise and Uniform convergence, Cauchy's criterion, Weierstrass M-test, Abel's test, Dirichlet's test for uniform convergence of series of functions, Uniform convergence and Continuity of series of functions, Term by term differentiation and integration.

Reference Books:

3. Charles G. Denlinger, Elements of Real Analysis, Jones and Bartlett (Student Edition), 2011.

[Signature]
Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
Paper - II: Differential Equations

Teaching: 3 Hours per Week
Duration of Examination: 3 Hours
Max. Marks: 40 (Science)
53 (Arts)

Note: This paper is divided into FIVE Units. TWO questions will be set from each Unit. Candidates are required to attempt FIVE questions in all taking ONE question from each Unit. All questions carry equal marks.

Unit 1: Degree and order of a differential equation. Equations of first order and first degree. Equations in which the variables are separable. Homogeneous equations and equations reducible to homogeneous form. Linear equations and equations reducible to linear form. Exact differential equations and equations which can be made exact.

Unit 2: First order but higher degree differential equations solvable for \(x, y \) and \(p \). Clairaut’s form and singular solutions with Extraneous Loci. Linear differential equations with constant coefficients, Complimentary function and Particular integral.

Unit 4: Linear differential equations of second order. Linear independence of solutions. Solution by transformation of the equation by changing the dependent variable/the independent variable, Factorization of operators, Method of variation of parameters, Method of undetermined coefficients.

Reference Books:
Paper – III: Numerical Analysis and Vector Calculus

Teaching: 3 Hours per Week
Duration of Examination: 3 Hours
Max. Marks: 40 (Science) 54 (Arts)

Note: (i) This paper is divided into FIVE Units. TWO questions will be set from each Unit. Candidates are required to attempt FIVE questions in all taking ONE question from each Unit. All questions carry equal marks.
(ii) Non-Programmable Scientific Calculators are allowed.

Unit 3: Relation between the roots and coefficients of general polynomial equation in one variable, transformation of equations, Descarte’s rule of signs, solution of cubic equations by Cardon’s method, biquadratic equations by Ferrari’s method. Numerical solution of Algebraic and Transcendental equations, Bisection method, Secant method, Regula-Falsi method, Iteration method, Newton- Raphson Method (derivation of formulae and rate of convergence only).

Unit 4: Gauss elimination and Iterative methods (Jacobi and Gauss Seidal) for solving system of linear algebraic equations. Partial Pivoting method, ill conditioned systems. Numerical solutions of ordinary differential equations of first order with initial condition using Picard’s, Euler and modified Euler’s method.

Unit 5: Scalar and Vector point functions. Differentiation and integration of vector point functions. Directional derivative. Differential operators. Gradient, Divergence and Curl. Theorems of Gauss, Green, Stokes (without proof) and problems based on these theorems.

Reference Books:
Practical

Teaching: 2 hours per week per batch not more than 20 students.

Examination Scheme: Duration: 2 Hours

<table>
<thead>
<tr>
<th></th>
<th>Science</th>
<th>Arts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Marks</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Min. Pass Marks</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

Distribution of Marks:

Two Practicals one from each group

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Marks each</td>
<td>20 Marks (13 Marks each)</td>
<td>26</td>
</tr>
<tr>
<td>Practical Record</td>
<td>05 Marks</td>
<td>07</td>
</tr>
<tr>
<td>Viva-voce</td>
<td>05 Marks</td>
<td>07</td>
</tr>
<tr>
<td>Total Marks</td>
<td>30 Marks</td>
<td>40</td>
</tr>
</tbody>
</table>

The paper will contain TWO practical. The candidates are required to attempt both practical.

Practicals with Computer Programming in C Language.

Programming languages and problem solving on computers, Algorithm, Flow chart, Programming in C- Constants, Variables, Arithmetic and logical expressions, Input-Output, Conditional statements, Implementing loops in Programs, Defining and manipulation arrays and functions.

Group A:

1. Printing n terms of Fibonacci sequence.
2. Finding \(n! \), \(\sum n \), \(\sum n^2 \) etc.
3. Defining a function and finding sum of n terms of a series/sequence whose general term is given (e.g. \(a_n = \frac{n^2+3}{n+1} \)).
4. Printing Pascal's triangle.
5. Finding gcd and lcm of two numbers by Euclid's algorithm.
6. Checking prime/composite number.
7. Finding number of primes less than n, n ∈ Z.
8. Finding mean, standard deviation and \(^nP_r\), \(^nC_r\) for different n and r.

Group B:

Note:

1. Each Candidate (Regular/non-Collegiate) has to prepare his/her practical record.
2. Each Candidate has to pass in Practical and Theory examinations separately.