University of Rajasthan
Jaipur

SYLLABUS

B.Sc. (Hons.)

PART-II

Examination-2021

Dy. Registrar (Acad.)
University of Rajasthan
JAIPUR
Scheme of Examination
B.Sc (Honours) Part-II
(10+2+3 Pattern)

For a pass at each examination a candidate should be required to obtain a minimum of 36% marks in each subsidiary subjects and 40% marks in the Honours subjects, passing separately in the practicals, wherever prescribed, shall be necessary.

Successful candidates will be classified as under:

of the aggregate marks prescribed both in Honours and subsidiary subject of Part I, II, & III Examination taken together.

All the rest will be declared to have passed the examination if they obtain a minimum of 40% marks in the aggregate.

The number of papers and practicals, wherever prescribed the duration of examination, maximum marks and minimum pass marks shall be shown in the relevant syllabus.

A candidate shall be required to offer one Honours subjects and one subsidiary subject out of the following subjects to the condition that the same were offered by him as optional subjects at the First T.D.C. Examinations of the University or an examination recognized by the Universities equivalent thereto:

Honours Subjects:
1. Physics
2. Chemistry
3. Zoology
4. Botany
5. Mathematics
6. Psychology
7. Geography

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
## CONTENTS

**Syllabus (Subsidiary Subjects) (Same Courses of Study as prescribed for Part-II T.D.C. Pass Course)**

<table>
<thead>
<tr>
<th>Subjects (Honours Subjects) :-</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Physics</td>
<td>4-13</td>
</tr>
<tr>
<td>2. Chemistry</td>
<td>14-21</td>
</tr>
<tr>
<td>3. Zoology</td>
<td>22-31</td>
</tr>
<tr>
<td>4. Botany</td>
<td>32-40</td>
</tr>
<tr>
<td>5. Mathematics</td>
<td>41-46</td>
</tr>
<tr>
<td>6. Psychology</td>
<td>47-52</td>
</tr>
<tr>
<td>7. Geography</td>
<td>53-58</td>
</tr>
</tbody>
</table>

---

Dy. Registrar (Academic-I)  
University of Rajasthan  
Jaipur
1. PHYSICS

Syllabus: B.Sc. (Hons.) Pt.-II

B.Sc. (HONS.) PART-II EXAMINATION

1. PHYSICS (HONS.)

Paper-V : Optics

Five questions are to be set taking one from each unit (each question will have an internal choice). Student will attempt all the five questions. 40% weightage will be given to problems and numericals.

Unit-I Interference

Superposition of waves from two point sources, the necessity of coherence correlation function of two light waves. Degree of partial coherences and visibility of fringes. Effective size of a point source. Brown and Twiss experiment. Self correlation function and degree of temporal coherence for quasimonochromatic light. Coherence time and wave packet. Interference of waves from two coherent point sources. Shape of interference fringes in 3-dimensional space and their appearance on a screen. Intensity distribution in space. Fresnel’s biprism experiment. Interference of waves from several synchronous sources. Directional transmission and reception of radio signals.


Unit-II Fraunhofer Diffraction

Unit-III Fresnel’s diffraction and X-ray diffraction

Fresnel’s diffraction by a circular aperture, straight edge and a thin slit. Cornu's spiral geometrical method to study Fresnel’s diffraction Pattern. Zone plate multiplication of a zone plate.


Unit-IV Laser and Holography

Spontaneous and stimulated emission, density of states, Einstein’s, A and B coefficients. Ratio of stimulated to spontaneous transitions in a system in thermal equilibrium. Energy density of radiation as a result of stimulated emission and absorption, condition for stimulated emission and absorption, condition for amplification. Population inversion, Methods of optical pumping, Energy level Scheme of He-Ne and Ruby lasers. Working of a laser source, special features of a laser source and their origin. Tunnel lasers (qualitative discussion only).

Basic concept of holography, difference between a hologram and a photograph. Construction of a hologram and reconstruction of image.

Unit-V Polarization

Plane Electromagnetic waves, E and B of plane polarized, circularly polarized and elliptically polarized light and mathematical representations. Boundary conditions for electric and magnetic fields at the vacuum dielectric interference. Reflection and refraction of EM Waves at a plane dielectric surface at normal and oblique incidence. Derivation of Fresnel’s relations. Polarization by selective (dichroism) wire grid polarizer for microwaves. Polaroids Application of Polaroids in 3-D movies, Polarization by scattering.


Optical activity, Specific rotation. Biquartz and half shade polarimeters.
Syllabus: B.Sc. (Hons.) Pt.-II

Books Recommended:
1. Geometrical and Physical Optics by B.K. Mathur
2. An Introduction to Modern Optics by A.K. Ghatak
3. Optics by D.P. Khandelwal
4. An Introduction to Modern Optics by F.R. Fowles
5. Optical Physics by Lipson and Lipson.

Paper-VI: Mathematical Physics

Note: Five questions are to be set taking one from each unit (each question will have an internal choice). Student will attempt all the five questions. 40% weightage will be given to problems and numericals.

Unit-I

Orthogonal Curvilinear co-ordinate system. Scale factors, expression for gradient, divergence and curl and their applications to Cartesian, circular, cylindrical and spherical polar co-ordinate systems.


Unit-II


Unit-III


The method of Frobenius: Solution about regular singular points, The Gamma function, the Bessel-Clifford equation.

Roots differing by an integer: Series method, Solution of Bessel equation for...
(i) Roots not differing by an integer
(ii) Equal roots
(iii) Roots differing by an integer.

Basic identities involving Bessel Functions. Basic properties like orthogonality recurrence relation and generating functions of Bessel, Hermite, Legendre, and associated Legendre's function (simple applications).

Unit-IV

Solution of partial differential by separation of variable technique and its application to following Boundary Value Problems:

(i) Laplace equation in three dimensional Cartesian co-ordinate system—line charge between two earthed parallel plates.
(ii) Laplace equation in Spherical coordinate system—Electric potential about a spherical surface.
(iii) Wave equation in two dimensional Cartesian co-ordinate system Heat conduction in a thin rectangular plate.
(iv) Diffusion equation in cylindrical co-ordinate system.

Unit-V

Matrices: Inverse of a matrix, adjoint, Hermition adjoint, Solution of linear equations using matrix.

Norms and inner products, orthogonal sets and matrices, the Gram Schmidt process and the Q-R factorization theorem. Projection matrices. Least square fit of data. Eigen values and Eigen vectors, diagonalization of matrices. Examples involving up to 3x3 matrices and for the case of real symmetric and simple matrices. Solution of linear differential equations for the homogeneous and non-homogeneous cases.

Reference Books:
1. Mathematical Methods by Potter and Goldberg (Prentice Hall of India Pvt. Ltd.)
2. Applied Mathematics for Engineers and Physicists by Pipes and Harvill (McGraw Hill Book Co.)
Syllabus: B.Sc. (Hons.) Pt.-II

Paper-VII: Quantum Mechanics

Note: Five questions are to be set taking one from each unit (each question will have an internal choice). Student will attempt all the five questions. 40% weightage will be given to problems and numericals.

Unit-I

Development of Quantum Theory: Black body radiation, Planck's Quantum Hypothesis, Specific heats of solids, The Photoelectric effect, The Compton effect, Uncertainty principle, Its applications such as (i) Non-existence of electrons in nucleus (ii) Ground state energy of H-atom (iii) Ground state energy of harmonic oscillator and (iv) Natural width of spectral lines.

The Schrödinger's equation and Stationary State: A free particle in one dimension, Generalization to three dimensions, The operator correspondence and the Schrödinger equation for a particle subject to forces, Physical Interpretation and conditions on the wave function: Normalization and Probability Interpretation, Non-normalizable wave functions and Box Normalization, Conservation of Probability, Expectation Values, Ehrenfest's Theorem, Admissibility conditions on the wave function.

Stationary States and Energy Spectra: Stationary States: Time independent Schrödinger equation, a particle in a square well potential, bound states in a square well \((E<0)\), admissible solutions of wave equation (b) The Energy Eigen values-Discrete Spectrum. (c) The Energy Eigen functions; Parity (d) Penetration into classically forbidden regions.

Unit-II

Unit-III


Unit-IV


Syllabus: B.Sc (Hons) Pt.-II

(a) Nonlocalized States (E>0) (b) Bound States (E<0). The Hydrogen Atom: Solution of the Radial Equation; Energy Levels, Stationary State Wave Functions, Discussion of Bound States.

Unit-V

Representations, Transformations and Symmetries:
Quantum States; State vectors and Wave Functions, The Hilbert Space of state Vectors; Dirac Notation—(a) State Vectors and their conjugates (b) Norm and Scalar Product (c) Basis in Hilbert Space, Dynamical Variables and Linear Operators—(a) Abstract Operators; the Quantum Conditions (b) The Adjoint; Self-Adjointness (c) Eigen values and Eigen Vectors (d) Expansion of the Identity; Projection Operators (e) Unitary Operators, Representations—(a) Representation of State Vectors: The Wave function (b) Dynamical Variables as Matrix Operators (c) Products of Operators : The Quantum Condition (d) Self-Adjointness and Hermiticity (e) Diagonalization, Continuous Basis – The Schrodinger Representation, Degeneracy; Labelling by commuting observables, Change of Basis; Unitary Transformations, Unitary Transformations Induced by change of Coordinate System: Translations, Unitary Transformation induced by Rotation of Coordinate System, The Algebra of Rotation Generators, Transformation of Dynamical Variables, Symmetries and Conservation Laws, Space Inversion (a) Intrinsic Parity (b) The Unitary Operators of Space Inversion (d) Parity Non-Conservation, Time Reversal.

Reference Books:

Paper-VIII : Electronics

Note: Five questions are to be set taking one question from each unit. (each question will have an internal choice). The student will attempt all 5 questions. 40% weightage will be given to problems and numericals.
Unit-I

Circuit analysis: Networks: Some topological definitions. Loop and Nodal analysis of d.c. and a.c. circuits (based on Kirchoff Laws).

Two port network: Current voltage conventions, Concept of Driving point and transfer impedance open circuit, short circuit and hybrid parameters. star delta /T-π inter-conversions, open, short and characteristic impedance of symmetric T-π network.

Network theorems: (reference of DC as well as AC circuits is to be given) superposition, Thevenin, Norton, Reciprocity, Compensation. Maximum power transfer.

Unit-II


Rectification and Power Supply: Diode parameters and Specifications (reference of some commonly used diodes should be given), Diode Approximations. Half-wave, full-wave and bridge rectifiers, calculation of efficiency. Ripple factor and Regulation, Filters: A comparative study of shunt capacitor, L section and pi section filter, diode voltage multiplier, Zener regulator.

Unit-III

Transistors: Basic ideas, operation, CB, CE, CC configurations. Input and output characteristics (for these configurations) and current voltages, notation, Concept of DC and AC load lines, Transistor as a switch, as a current source, Transistor biasing circuits: Base bias, collector and emitter feed back bias. Basic ideas about FET and MOSFETS.

Transistor Amplifiers: CE, CC and CB Amplifier and their approximate Analysis for gain, input and output impedance (using eber Mol’s h-equivalent circuit).

Coupling of Amplifiers (basic ideas of R-C, L-C Transformer and direct coupling) basic idea of class A, B, AB and C. operation, effect of transistor Frequency capacitances on high frequency amplifier gain, gain and phase versus frequency effect of capacitors in transistor amplifier and frequency response of CE Amplifier.
Syllabus: B.Sc. (Hons.) Pt.-II

Unit-IV

Amplifiers with feedback: Concept of Feed back. Stabilisation of gain by negative feedback, effects of feedback on output and input resistance and nonlinear distortion. Voltage and current feedback circuits and frequency response of feedback Amplifiers.

Oscillators: Theory of sinusoidal oscillation. Wein bridge, phase shift, Colpit, Hartley, Clapp and crystal oscillators (only an approximate calculation of oscillator frequency and gain requirements, if necessary).

Unit-V


Integrated Circuits: Basic idea about pin configuration and block diagrams of some popular IC's. Op Amp, 741. Three pin Regulators, and Timer 555 and 7400, 7 segment display.

Reference Books:
1. A.P. Malvino: Electronics Principles
2. A.P. Malvino: Digital Computer Electronics
3. Van Valcumgurg: Network Analysis
6. J.D. Ryder: Network Analysis

Physics Practicals

Max. Marks : 100  Min. Pass Marks : 40

Two practicals of 5 hours each spread over two days.

The students are expected to perform 15 experiments in the academic session. The suggested list of experiments is given below.

Dr. Registrar (Academic) University of Rajasthan

[Signature]

[Stamp]
the institution may however, set other experiments of the same level and may communicate the same to the convener, Board of Studies.

1. Using platinum resistance thermometer to find the melting point of a given substance.
2. Determine the thermodynamic constant $\gamma$ (gamma) = $C_p/C_v$ using elements and Desormes method.
3. Determine thermal conductivity of a bad conductor by lee method.
4. Determination of a ballistic constant of a ballistic galvanometers and high resistance by leakage method.
5. Study of variation of total thermal radiation with temperature.
6. To study conductor interaction through fall to magnet in a hollow metal cylinder.
7. To study temperature variation of modulus of rigidity.
8. Plot thermo emf versus temperatures graph and find the neutral temperature uses and bath.
9. Study the magnetic field along the axis of a current carrying circular coil. Plot the necessary graph and hence find the radius of the circular coil.
10. Study of power supply using half wave. Full wave and bridge rectifier with various filter circuits.
11. Study of half wave rectifier using single diode and application of L and $\pi$ section filter.
12. To study characteristics of a given transistor PNP/NPN.
14. Study of single stage transistor audio amplifier (variation of gain with frequency).
15. To determine emf by Thomson's method.
2. CHEMISTRY

Max Marks: 400

<table>
<thead>
<tr>
<th>Duration (hrs)</th>
<th>Max. Marks</th>
<th>Min. Pass Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper-V</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>Paper-VI</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>Paper-VII</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>Paper-VIII</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>Practical</td>
<td>8</td>
<td>100</td>
</tr>
</tbody>
</table>

(Complete in TWO days)

Note: Each paper will contain ten questions having two questions from each unit. Candidates are required to attempt five questions in all selecting one question from each unit.

Paper-V Inorganic Chemistry
(4 hrs / Week)

UNIT-I

Coordination Chemistry:
Werner's coordination theory, effective atomic number, chelates, nomenclature of coordination compounds, isomerism in coordination compounds.

Magnetic properties of transition metal complexes:
Types of magnetic behaviour, methods of determining magnetic susceptibility, spin-only formula, L-S coupling, correlation of $\mu_s$ and $\mu_{eff}$ values, orbital contribution of magnetic moments, application of magnetic moment data for 3d-metal complexes.

UNIT-II

Theories of Coordination Compounds:
Valence bond theory of transition metal complexes, limitations of valence bond theory.
Crystal field theory, crystal field splitting in octahedral, tetrahedral and square planar complexes, factors affecting the crystal field parameters, Jahn-Teller effect.
Application of crystal field stabilization energy in explaining ionic radii of divalent ions of first transition series, heat of hydration of divalent ions of first transition series.

UNIT-III

Electronic spectra of Transition metal complexes:
Types of electronic transitions, selection rules for d-d transitions, spectroscopic ground states, spectrochemical series, Orgel energy level diagrams for $d^1$ and $d^2$ states, discussion of the electronic spectrum of $\text{[Cu(H_2O)_6]}^{2+}$ complex ion.

Thermodynamic and kinetic aspects of metal complexes:
A brief outline of thermodynamic stability of metal complexes and factors affecting the stability, substitution reactions of square planar complexes.

UNIT-IV

Chemistry of Lanthanide elements:
General study, occurrence and isolation, electronic configuration, oxidation states and their
UNIT-V

Oxidation and Reduction:
Redox potential data and their analysis, redox stability in water. Frost, Latimer and Pourbaix diagrams. Application of redox data in the extraction of the elements.

Acids and bases:

Non-aqueous Solvents:
Physical properties of a solvent, types of solvents and their general characteristics, reactions in non-aqueous solvents with reference to liquid NH₃ and liquid SO₂.

Paper-VI Organic Chemistry
(4 hrs./week)

Unit-I

Alcohols
Classification and nomenclature.
Dihydric alcohols: Nomenclature, methods of formation. Chemical reactions of vicinal glycols, oxidative cleavage [Ph(OAc)₂ and HIO₄] and pinacol-pinacolone rearrangement.
Trihydric alcohols: Nomenclature, methods of formation and chemical reactions of glycerol.

Phenols

Ethers and Epoxides

UNIT II

Aldehydes and Ketones
Nomenclature and structure of the carbonyl group. Synthesis of aldehydes and ketones. With particular reference to formaldehyde, acetaldehyde, acetone, benzaldehyde, acetophenone, and...
UNIT-III

Carboxylic Acids
Aromatic carboxylic acids: Esterification of benzoic acid, salicylic acid, phthalic acid and cinnamic acid.
Methods of preparation and chemical reaction of $\alpha$, $\beta$ and $\gamma$-hydroxy acids: malic, tartaric and citric acids.

Carboxylic Acid Derivatives
Preparation of carboxylic acid derivatives, chemical reactions. Mechanism of esterification and hydrolysis (acidic and basic).


UNIT-IV

Organic Compounds of Nitrogen
Preparation and chemical reactions of nitroalkanes. Mechanism of nucleophilic substitution in nitrocompounds and their reductions in acidic, neutral and alkaline media. Picric acid.

UNIT-V

NMR spectroscopy
Proton magnetic resonance spectroscopy: Introduction, nuclear spin and energy levels, transitions, equivalent and non-equivalent protons, nuclear shielding and deshielding, chemical shift, spin-spin coupling and coupling constant, areas of signals, interpretation of PMR spectra of simple organic molecules like C₂H₅Br, C₂H₅OH, CH₃CHO, 1,1,2-tribromoethane, ethyl acetate, toluene and acetophenone.
Note: Mechanism of the reactions should be studied wherever possible.

Paper-VII Physical Chemistry
(4 hrs./week)

Unit - I

Electrochemistry:
(a) Electrolytic conduction, specific, equivalent and molar conductivities and their determination.
Variation of conductance with dilution. Effect of temperature, pressure, solvent and viscosity on conductance.
Kohlrausch's law and its applications in determination of
(1) Degree of dissociation and dissociation constant of weak acids
(2) Solubility of sparingly soluble salts
(3) Hydrolysis constant
(4) Ionic product of water
Inter-ionic attraction theory, quantitative treatment of theory of strong electrolytes, verification of the Debye-Hückel Onsager equation, activity and activity coefficient, ionic strength.
(b) Transference number and their determination by
(1) Hittorf's method
(2) Moving boundary method.
Abnormal transference numbers.

Unit - II

Thermodynamics:

Unit - III

Spectroscopy
Electromagnetic radiations and wave parameters interaction of electromagnetic radiations with matter. Ultraviolet and visible spectroscopy having absorption interaction. Chromophores and auxochromes. Determination of wavelength (max) and molar extinction coefficient of compound. Bathochromic and hypsochromic shifts. Colours in complexes. Applications of UV.
Unit - IV

Quantum Chemistry:
Quantum theory of radiations, photoelectric effect and Crompton effect. Limitations of Bohr’s model. Heisenberg uncertainty principle, wave nature of electron, de Broglie wave equation and its experimental verification. Operators and their applications. Sinusoidal wave motion, derivation of Schrodinger’s wave equation. Physical significance of $\psi$ (psi) and $\psi'$ (psi'). Eigen values and Eigen functions. Characteristics of wave functions. Normalization and orthogonality of wave functions. Solution of Schrodinger wave equation. Particle in one dimension box.

Unit - V

Photochemistry:
Absorption of light. Grothus – Dropper law. Einstein law of photochemical equivalence. Quantum yield of photochemical reactions, reasons for high and low quantum yield of photochemical equations. Primary and secondary processes, photochemical reactions such as (1) HCl reaction, (2) photolysis of ammonia (3) hydrolysis of monochloro acetic acid
Consequences of light absorption phosphorescence, fluorescence, chemiluminescence and photosensitization.

Nuclear Chemistry:
Nature of radioactivity, artificial radioactivity, radioactive disintegration. Group displacement law, half life period and average life period. Radioactive equilibrium, artificial radioactivity and transmutation of elements. Fundamental particles, positron, antiproton, anti-neutron and anti-neutrinos

Nuclear Models: Liquid drop model, magic number and shell model.

Nuclear Fission: nuclear reactor and atom bomb

Nuclear Fusion: Hydrogen bomb

Applications of radioactivity in chemistry

Tracer Techniques:
(1) Radiocarbon dating
(2) Reaction mechanism
(3) Biology and medicine

Suggested Books:
1. Physical Chemistry by S. Glasston
2. Elements of Physical Chemistry by Lewis and Glasston
3. Physical Chemistry by Atkins
4. Thermodynamics by Mishra & Rastogi
5. Physical Chemistry by Moore
UNIT-I
Chromatography: Principles of absorption and partition chromatography, techniques and application of column, paper and thin layer chromatography. Electrophoresis and its applications in separation of amino acids.
Ion exchange methods: General discussion, action of ion exchange resins, column operation, experimental techniques, types of ion exchange resins, determination of the following pairs by ion exchange techniques: (a) chloride and bromide (b) nickel and cobalt.

UNIT-II
Conductometric titrations: The basis of conductometric titrations. Apparatus and measurement, application of conductometric titrations. High frequency titrations, advantages of the techniques, some examples of high frequency titrations.
Potentiometric titrations: Introduction, electrodes, instrumentation, potentiometric titrations, differential potentiometric titrations, automatic potentiometric titrations, location of end points, determination of some metals through potentiometric titrations.

UNIT-III
Spectrophotometric titrations: Basic principle, instrumentation experimental techniques, spectrophotometric analysis of Fe (III), Co (II), Ni (II), Fe (II) in presence of Al (III) with EDTA. Nephelometry & Turbidimetry: General discussion, instrumentation, some nephelometry determination (a) sulphate (b) phosphate.

UNIT-IV
Flame emission and Atomic absorption spectrometry: Basic principle, instrumentation. Nebulization, flames and flame temperatures, interferences. flame spectrometric techniques.
Atomic emission spectrography: Spectroscopic sources, instruments for emission spectrographic analysis, qualitative and quantitative spectrographic analysis. Qualitative spectrographic analysis of a non ferrous alloy and complex organic mixture.

UNIT-V
Inorganic Chemistry
Quantitative (Gravimetric) (any three)
   a) Estimation of Barium (as sulphate)
   b) Lead (as chromate)
   c) Copper (as Cuprous thiocyanate)
   d) Nickel (as dimethyl glyoximate)
   e) Silver (as chloride)
   f) Zinc (as Zinc ammonium phosphate)
   g) Magnesium (as Magnesium hydrogen phosphate, MgHPO₄)
Inorganic Preparations (any four) of coordination compounds and their characterization:
   a) Chloropentammincobalt(III) chloride.
   b) Cuperous chloride, Cu₂Cl₂.
   c) Tetrammunicopper(II) sulphate.
   d) Pyridine complex of copper
   e) Prussian blue.
   f) Hexaamminenickel(II) chloride
Organic Chemistry
(i) Identification of simple organic compound and preparation of its suitable derivative.
(ii) Simple one step organic preparation—the students are expected to perform at least five of the following preparations:
   (a) Preparation of m-dinitrobenzene from nitrobenzene.
   (b) Preparation of acetonilide from aniline.
   (c) Preparation of aspirin from salicylic acid.
   (d) Preparation of o-and p-bromo acetonilide from acetonilide.
   (e) Preparation of o-and p-bromo aniline from o-and p-bromoacetonilide.
   (f) Partial reduction, m-dinitrobenzene into m-nitro aniline.
   (g) Preparation of methyl orange from sulphanic acid.
   (h) Preparation of acetylglucose from glycine.
Physical Chemistry
Exercises
   At least four experiments are to be performed from each Unit
Chemical Dynamics experiments:
   a) To find the velocity constant of the hydrolysis of methyl acetate catalyzed by an acid
   b) To determine the order of saponification of ethyl acetate by NaOH.
   c) To find out the rate constant and order of reaction between potassium persulphate and potassium iodide.
   d) To study the reaction between acetone and iodine.
Transition temperature:
   a) Determination of transition temperature by thermometric method.
Molecular weight determination:
   a) Determination of molecular weight of non-volatile solute by cryoscopic method and application of technique for determination of the van't Hoff factor or degree of dissociation of an electrolyte.

Conductometry...
- To find out the strength of strong acid by titrating it against strong alkali.
- To find out the strength of weak acid by titrating it against a strong alkali.
- To find out the strength of hydrochloric acid and acetic acid in a mixture of both, by titrating it against sodium hydroxide.
- Determination of equivalent conductivity of an electrolyte at different dilutions.

(Instructions to the Examiner)

B.Sc. (HONS.) Pt.-II CHEMISTRY PRACTICAL EXAMINATION

Max. Marks: 100  Duration of Exam: 8 hrs.  (Complete in Two days)

<table>
<thead>
<tr>
<th>Inorganic Chemistry</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. 1 Quantitative:</td>
<td>One of the gravimetric exercises mentioned in the syllabus.</td>
</tr>
<tr>
<td>Ex. 2 Inorganic preparation:</td>
<td>One of the exercises mentioned in the syllabus.</td>
</tr>
<tr>
<td>Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>Ex. 3 Identification of the simple organic compound and preparation of their suitable derivative.</td>
<td>15</td>
</tr>
<tr>
<td>Ex. 4 Organic preparation:</td>
<td>One of the exercises mentioned in the syllabus.</td>
</tr>
<tr>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Ex. 5 Perform one of the physical chemistry experiments given in the syllabus.</td>
<td>25</td>
</tr>
<tr>
<td>Ex. 6 Viva-voce</td>
<td>10</td>
</tr>
<tr>
<td>Ex. 7 Record</td>
<td>10</td>
</tr>
</tbody>
</table>

100
ZOOLGY
B.Sc. (Hons) Part –II

Scheme:

Paper VII : Animal Diversity-3 Max. Marks-50
Paper VIII : Animal Diversity-4 Max. Marks-50
Paper IX : Physiology-1 Max. Marks-50
Paper X : Physiology-2 Max. Marks-50
Paper XI : Immunology Max. Marks-50
Paper XII : Ethology Max. Marks-50
Practicals : 2 Days (8Hrs.) Max. Marks-100

Scheme of Examination: Max. Marks: 50

1. There will be 5 Questions in each paper. All questions will be compulsory and carry equal marks.
2. Question number 1 will comprise 10 very short answer (maximum 25 words) type questions, each of 1 mark. Questions should be evenly distributed covering entire syllabus.
3. Each paper is divided into four units/sections. There will be one question from each unit/section. The question number 2 to 5 will have internal choice.

Seminars, posters, models, educational tour report, practical record etc., will carry internal marking which will be added in the practicals.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
Paper-VII: Animal Diversity –3

Section-A

1. Origin and general characteristics of chordates.
2. Protochordates – Classification up to orders, Interrelations, Structural organisation of Hemichordates, Urochordates and Cephalochordates and their affinities.
3. Agnatha – Classification upto orders.

Section-B

4. Fishes- Origin and evolution of fishes; Classification upto order, Types of scales and fins parental care, respiratory organs, lateral line system and migration.
5. Pisciculture.

Section –C


Section –D

7. Reptiles – Classification upto orders, extinct reptiles, skull types in reptilians, biting apparatus and biting mechanism of any poisonous snake, poisonous & nonpoisonous snakes of India.

Paper-VIII: Animal Diversity-4

Section – A

1. Origin of birds, Bird migration and principles of bird flight, types of feathers, flight adaptations, perching mechanism.
3. Poultry keeping.

Section-B


Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
Section –C

5. Comparative anatomy of systems; Scoliodon, Frog, Varanus, Pigeon and Rabbit (Integument, skeletal system and digestive system).

Section- D

6. Comparative anatomy of systems: Scoliodon, Frog, Varanus, Pigeon and Rabbit (Circulatory system including heart and aortic arches, Respiratory system, sensory organs (Eye & Ear) & urinogenital system).

Paper-IX: Physiology –1

Section-A

2. Osmoregulation: Osmosis, diffusion, osmoregulation in animals, osmotic conformers, osmoregulation in hypotonic & hypertonic water animals and osmoregulation in terrestrial animals.
3. Physiology of excretion: Kinds of nitrogenous excretory end-products (ammonotelic, uricotelic and ureotelic), role of liver in the formation of these end products, functional architecture of mammalian kidney tubule and formation of urine: hormonal regulation of water and electrolyte balance.

Section -B

4. Blood: Composition and function of blood and lymph, blood groups, blood coagulation, structure and function of hemoglobin.
5. Heart: Structure, origin, conduction and regulation of heart beat, cardiac cycle and ECG.
Section-C

7. Respiration: Mechanism and control of breathing, concept of partial pressure of gases, Bohr’s & Haldane’s effect and chloride shift.
8. Structure and function of eye and ear in humans.

Section-D

9. Nutritional requirements and disorder due to protein and energy malnutrition, vitamin & mineral deficiencies.
10. Digestion and absorption of dietary components, hormonal and neuronal control of digestion.

Paper-X: Physiology -2

Section-A

1. Functional architecture of a neuron, physiology of nerve impulse: Origin and propagation of nerve impulse, synaptic transmission, spinal reflex arc and central control of reflex action.
2. Functional architecture of skeletal muscle, chemical and biophysical events during contraction and relaxation of muscle fibers.

Section-B

3. Type of endocrine glands: Their secretions and functions, classification of hormones, histology of endocrine glands: Pituitary gland, pineal gland, adrenal, thyroid, parathyroid, islets of Langerhans, testis and ovary.

Section-C

4. Hormonal control of male and female reproduction and implantation, parturition and lactation in mammals.
5. Preliminary idea of neurosecretion: Hypothalamic control of pituitary function, neuroendocrine and endocrine mechanism of insects.
Section - D

6. Thermoregulation: Physiological process, thermoregulation in cold and hot environments, thermoregulation in poikilothersms and homeotherms.
7. Physiology of high altitude: Acclimatization & adaptations and diseases due to high altitudes.
8. Physiology of diving (basic outline): Oxygen toxicity, decompression and decompression models.

Paper -XI: Immunology

Section - A

1. Immunology: Definition, types of immunity – innate & acquired, humoral and cell – mediated.
2. Organs of immune system: Thymus, bone marrow, lymph node, spleen, tonsils, and Peyer’s patch.
3. Antigen: Antigenicity of molecules and haptens.

Section - B

4. Antibody : Structure, properties and function of IgG, IgM, IgD, IgA and IgE.
5. Antigen-antibody reactions: Precipitation reaction, agglutination reaction, neutralizing reaction, complement & lytic reactions and phagocytosis.

Section - C

6. Cells of immunity: Macrophages, lymphocytes (B- and T types), T-helper cells, T-killer cells, plasma cells and memory cells.
7. Mechanism of humoral or antibody mediated immunity and cell mediated immunity.

Section - D

8. MHC: Structure and function of class I, II and III MHC molecules, genomic map of MHC genes, Regulation of MHC expression.
9. Immunotolerance.
10. Autoimmunity: Involvement of CD4+ cells, contributing factors in autoimmune disease, Autoimmune disease: Hashimoto’s thyroiditis, Type I diabetes, Myasthenia Gravis, Rheumatoid arthritis, autoimmune hemolytic disease.
Paper – XII: Ethology

Section - A

1. Introduction: Ethology as a branch of biology and its significance.

Section - B

5. Feeding strategies among animals
6. Genetic and environmental components in the development of behavior.
7. Social behavior of honey bees, termites and wasps, social hierarchy in monkeys.
8. Hormones and behavior; Role of pheromones in behavior.

Section - C

10. Biological rhythms: Circadian rhythms and migration of fishes & birds.

Section - D

11. Types of Learning and memory: Conditioning, habituation, insight learning, association learning, reasoning, cognitive skills, trial & error.

Syllabus: B.Sc. Zoology (Hons.) Part-II

Min. Marks 40 8 hrs. /week Max. Marks 100

Practicals

1. Anatomy: Study of the following with dissection
   - Any edible fish (Wallago/Labeo): Afferent & efferent branchial arteries, cranial nerves, eye muscles, Weberian ossicles and internal ear.
   - Accessory respiratory organs- Heteropneustis, Anabas, Ophiocephalus and Clarius.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
2. **Museum specimens:**

3. **Osteology of Frog, Varanus, Fowl and Rabbit (use of models /charts/ artificial skeleton & bones etc.):** Skull, vertebral column, girdles and limbs.

4. **Study of permanent microscopic slides:**
   Dololium, Salpa, Oikopleura, Amphioxus: whole mount and T.S. passing through different regions of the body, Ammocoete larva: T.S. passing through different regions of the body, Scoliodon: T.S. passing through different regions of the body, Mammalian histology: T.S. of Liver, lung, testes, ovary, pancreas, thyroid, parathyroid, adrenal, stomach, duodenum, intestine, bone & cartilage, L.S. / T.S. of pituitary.

5. **Permanent preparation**

6. **Microtomy:** Fixation, processing, section, cutting & staining (H&E) of organs and morphometric measurements.

7. **Physiology**
   (i) Blood: Haemoglobin estimation, Hematocrit, WBC and RBC counting, clotting time period and blood pressure.
   (ii) Blood film: Identification of various types of leucocytes.
   (iii) Study of salivary amylase and catalase (liver) activities.
   (iv) Investigate passive diffusion through cell membrane of mammalian red cells (0.9% NaCl, 0.4% NaCl, 1% NaCl, 2% urea, 3% glycerol and distilled water).

8. **Immunology**
   (i) Blood groups: ABO and Rh factor.
   (ii) Widals test.
   (iii) Slides: Thymus, lymph nodes and spleen.

9. **Ethology**
   (i) Food preference in *Tribolium*.
   (ii) Antennal grooming in cockroach.
   (iii) Chemical communication among earthworms and ants.
   (iv) Reaction of *Paramecium* towards dilute acid drop.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
10. Educational tour to museum of natural history/sea shore/wild life sanctuary/Zoo for collection and on the spot observation of living animals/local visit to study biodiversity. Students are required to submit the report of the visit.

**B.Sc. Zoology (Hons.) Part-II**

**Scheme of practical examination and distribution of marks**

8Hrs. (2 days, 4hrs/day)

<table>
<thead>
<tr>
<th>Min marks: 20</th>
<th>Max marks: 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st day</td>
<td>Regular</td>
</tr>
<tr>
<td>1. Anatomy</td>
<td>09(6+3)</td>
</tr>
<tr>
<td>• Major</td>
<td></td>
</tr>
<tr>
<td>• Minor</td>
<td></td>
</tr>
<tr>
<td>2. Permanent preparation/ microtomy</td>
<td>05</td>
</tr>
<tr>
<td>3. Exercise in Immunology</td>
<td>05</td>
</tr>
<tr>
<td>4. Identification and Comments</td>
<td>16</td>
</tr>
<tr>
<td>on spots (1 to 8)</td>
<td></td>
</tr>
<tr>
<td>5. Viva voce</td>
<td>5</td>
</tr>
<tr>
<td>6. Class Record</td>
<td>5</td>
</tr>
<tr>
<td>7. Seminar/Project Report/Collection</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Min marks: 20</th>
<th>Max marks: 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd day</td>
<td></td>
</tr>
<tr>
<td>1. Exercise in Physiology</td>
<td>14(6+4)</td>
</tr>
<tr>
<td>(a) Major</td>
<td></td>
</tr>
<tr>
<td>(b) Minor</td>
<td></td>
</tr>
<tr>
<td>2. Exercise in Ethology</td>
<td>05</td>
</tr>
<tr>
<td>3. Identification and Comments</td>
<td>16</td>
</tr>
<tr>
<td>on spots (1 to 8)</td>
<td></td>
</tr>
<tr>
<td>4. Viva voce</td>
<td>5</td>
</tr>
<tr>
<td>5. Class record</td>
<td>5</td>
</tr>
</tbody>
</table>

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
Notes:

- With reference to anatomy, the candidate must be well versed with the techniques of flag labeling and black paper insertion as the case may be for a clear illustration. Study of the various systems may be carried with the help of charts/models/CD-ROM's/high resolution picture/video's of lives anatomy and website dedicated to alternative of animal anatomy providing free wares.
- With reference to whole mounts and museum specimens in case of unavailability, the animal types should be substituted with diagrams/photographs/models etc.
- Students will keep records of all work done in the practical records.
- It should be ensured that animals used in the practical exercises are not covered under the wild life act 1972 and amendments made subsequently.
- The details methodology may be asked to be written wherever is necessary.

Recommended books:

## 4. BOTANY

**B.Sc. Part-II**

**Maximum Marks: 400**  
**Min. Pass Marks: 160**

<table>
<thead>
<tr>
<th>Paper</th>
<th>Course Title</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Molecular Biology</td>
<td>75</td>
</tr>
<tr>
<td>VI</td>
<td>Pteridophyta, Gymnosperm &amp; Paleobotany</td>
<td>75</td>
</tr>
<tr>
<td>VII</td>
<td>Morphology and Anatomy of Angiosperms</td>
<td>75</td>
</tr>
<tr>
<td>VIII</td>
<td>Microbiology and Plant Pathology</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Practical (6 Hrs.)</td>
<td>100</td>
</tr>
</tbody>
</table>

---

*Signature:*  

*Dy. Registrar (Academic)  
University of Rajasthan, Jaipur*
UNIT-I

Structure of Nucleic Acid
Miescher to Watson and Crick - historic perspective, DNA structure, Salient features of DNA helix. Types of DNA. Types of genetic material, denaturation and renaturation, dot curves. Organelle DNA -- mitochondria and chloroplast DNA. Structure of RNA, types of RNA (tRNA, mRNA, Ribosomes, miRNA, siRNA) and their functions.

DNA replication, damage and repair
Replicons-linear, circular and D-loops, initiation of replication, DNA polymerases, helicase, primase and other enzymes and proteins used in replication, coordinating synthesis of the leading and lagging strands, Okazaki fragments, Causes of DNA damage and molecular mechanisms of repair - excision repair system in bacteria and eukaryotes, base excision, mismatch repair systems.

UNIT-II

Transcription
Prokaryotic and eukaryotic RNA polymerases, promoter sequences, start point for RNA polymerase, transcription initiation, promoter clearance and elongation, termination, attenuation and antitermination.

RNA Modifications
Split genes, concept of introns and exons, removal of Introns, spliceosome machinery, splicing pathways, alternative splicing.

UNIT-III

Translation: Protein synthesis in Prokaryotes and Eukaryotes: Assembly line of polypeptide, various aspects of ribosome structure and assembly, various steps in protein synthesis, tRNA, aminoacyl-tRNA synthetase. Proteins involved in translation of polypeptide. Falhics of translation.
Inhibitors of protein synthesis. Regulation of translation.

Gene regulation
Prokaryotic transcription regulation: Lac and Trp operones, cis and trans acting elements. Eukaryotic transcription regulation, protein-protein interactions, DNA binding domains, histone acetylation, promoter activation and turning on/off the gene.

Suggested laboratory exercises
1. Preparation of culture medium (LB) for E.coli (both solid and liquid) and raise culture of E.coli.
2. Demonstration of antibiotic resistance. (Culture of E.coli containing plasmid (pUC 18/19) in LB medium with/without antibiotic pressure and interpretation of results).
3. Isolation and quantitative estimation of DNA using colorimeter (Diphenylamine reagent) or spectrophotometer (A260 measurement).
4. To perform Ames test in Salmonella / E.coli to study mutagenicity.
5. To isolate plant DNA.

SUGGESTED BOOKS

UNIT-I


UNIT-II

Gymnosperms: Classification and salient features; Evolutionary significance of gymnosperms. Comparative study of morphology, anatomy and reproduction of Cycadales-Cycas; Coniferales-Pinus; and Gnetales-Ephedra.

UNIT-III


Suggested laboratory exercise

Pteridophytes

Study of Specimens, external morphology and T.S. of Stem of the following:
- Lycopodium
- Selaginella
Gymnosperms

External Morphology and Permanent slides of-
- *Cycas* - Coralloid roots, Rachis (T.S.), Leaflet (V.S.) *Cycas* - Megasporophyll and Male cone with Microsporophylls, Mature Ovule.
- *Pinus* - Stem (TLS & RLS), Needle (V.S.), Male and Female Cone, Mature Ovule
- *Ephedra* - Stem (T.S.), Male and Female Flowers, Mature ovule.
- *Williamsonia* - Chart Specimen (Fossil).

Suggested Books:
6. 

UNIT-I

The basic body plan of flowering plants:
- Modular type of growth, diversity of plant forms in annuals, biennials, perennials plant
- Branching pattern and canopy architecture.
- Morphology of Inflorescences, Flower and fruits.

UNIT-II
Convergence of evolution of tree habit in Spermatophyta, Tissues; simple, complex and secretory tissues, tissue system.
Shoot and root systems: variation in habit and longevity.

UNIT-III

Organization of the higher plant body

Meristems and development: Shoot apical meristem, root apical meristem, lateral meristems and their functions. Range of form and structure of stem, leaf and root; their tissues and functions.

Secondary body of the plant: Secondary growth in stem and roots. Vascular cambium, secondary xylem (basic structure of wood); secondary phloem and periderm.

Anomalous secondary growth

Suggested Laboratory Exercises:

- Study of any commonly occurring dicotyledonous plant to understand the body plan and modular type of growth.
- Life forms exhibited by flowering plants (by visit to a forest or a garden).
- L.S. of shoot tip to study the organization of meristem and origin of leaf primordial.
- Monopodial and sympodial types of branching in monocots & dicots.
- Anatomy of primary and secondary growth in monocots and dicots using handout sections of sunflower, maize, cucurbita stem and roots.
- Monocot- maize (root, stem and leaves).
- Dicot-Helianthus, Cicer and Mangifera (root, stem and leaves).
- Study of diversity in leaf shape and size. Internal structure of leaf-Dorsiventral and isobilateral leaves; study of stomatal types.

Suggested Books:

UNIT-I

Discovery of Micro-organisms: Systematic position of micro-organisms in biological world; classification of micro-organisms and characteristic features of different groups.

Methods in Microbiology: Basic principles of microscopy, micrometry, staining, sterilization methods; culture media; pure culture methods; methods for population estimation, growth determination.

Ultrastructure of Micro-organisms: Prokaryotic microorganisms; fine structure of prokaryotic cell; eukaryotic microorganisms; viruses—properties and classification; characteristic features of host-virus interaction; bacteriophage T4; tobacco mosaic virus; general account of mycoplasma.

Genetic recombination in prokaryotes: Conjugation, transformation and transduction.

UNIT-II

General account of plant pathogens: Historical developments; general account of diseases caused by plant pathogens.

Plant diseases by fungi: Rust and smuts of wheat, downy mildew and green ear disease of bajra, white rust of crucifers, late blight of potato, powdery mildew of cucurbits and grapes, red rot of sugarcane.

Pathogen attack and defence mechanisms: Physical, physiological and biochemical aspects.

Plant disease epidemiology: Transmission and spread of plant pathogens; disease cycles, epidemics, modelling and disease forecasting.

Plant disease management: Chemical, biological; IPM systems; biopesticides.
Genetics of resistance and susceptibility: Genes for virulence and avirulence, their application to resistance and susceptibility; induced resistance (immunization).

Molecular plant pathology: Molecular diagnosis, identification of genes and specific molecules in disease development.

Role of micro-organisms: in biogeochemical cycling of nitrogen and carbon; biological N₂ fixation.

Industrial application of micro-organisms: Organic acids, alcohol, food processing, milk products, antibiotics, biopesticides.

Application of information technology in plant pathology: Stimulation of epidemics, programmes for diagnosis.

Suggested laboratory exercises

Microbiology

- Sex in a body (photograph).
- Microscope and its various parts description.
- Sterilization techniques for microorganisms.
- Study of yeast, lactobacilli and cyanobacteria.
- Media preparation (Nutrient agar).
- Culture of microorganisms by streaking on agar plates.
- Study of diseases - Citrus canker, TMV, little leaf of brinjal.
- Bacteriophage (photograph).
- Study of symptoms of virus infected plants.
- Bacterial staining in milk and curd.

Plant diseases

- White rust of cucumbers - Claviceps.
- Late blight of potato - Phytophthora infestens.
- Early blight of potato - Alternaria solani.
- Green leaf disease of bajra - Sclerospora graminicola.
- Powdery mildew.
- Tikka leaf spot disease of groundnut.
- Brown spot of sugarcane - Colletotrichum falcatum.

Field study of plants in famous field/agricultural stations.

Suggested Books:
Teaching: 3 hours per week per Theory paper.  
2 Hours per Week for Practical

Examination:

<table>
<thead>
<tr>
<th>Scheme:</th>
<th>Min. Pass Marks</th>
<th>Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science – 160</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>Duration</td>
<td>Max. Marks</td>
<td></td>
</tr>
<tr>
<td>Paper – V</td>
<td>Real Analysis</td>
<td>3 hrs.</td>
</tr>
<tr>
<td>Paper – VI</td>
<td>Differential Equations</td>
<td>3 hrs.</td>
</tr>
<tr>
<td>Paper – VII</td>
<td>Numerical Analysis and Vector Calculus</td>
<td>3 hrs.</td>
</tr>
<tr>
<td>Paper – VIII</td>
<td>Operations Research</td>
<td>3 hrs.</td>
</tr>
<tr>
<td>Practical:</td>
<td>2 hrs.</td>
<td>60</td>
</tr>
</tbody>
</table>

Note:
1. Common paper will be set for both the Faculties of Social Science and Science. However, the marks obtained by the candidate in the case of Faculty of Social Science will be converted according to the ratio of the maximum marks of the papers in the two Faculties.
2. Each candidate is required to appear in the Practical examination to be conducted by internal and external examiners. External examiner will be appointed by the University and internal examiner will be appointed by the Principal in consultation with Local Head/Head, Department of Mathematics in the college.
3. An Internal/external examiner can conduct Practical Examination not more than 100 (Hundred) candidates.
4. Each candidate has to pass in Theory and Practical examinations separately.
Paper – V: Real Analysis

Teaching: 3 Hours per Week

Duration of Examination: 3 Hours

Max. Marks: 85

Note: This paper is divided into FIVE Units. TWO questions will be set from each Unit. Candidates are required to attempt FIVE questions in all taking ONE question from each Unit. All questions carry equal marks.

Unit 1: Real numbers as complete ordered field, Limit point, Bolzano-Weierstrass theorem, closed and Open sets. Concept of compactness and connectedness. Heine-Borel theorem. Holder inequality & Minkowski inequality, Metric space – Definition and examples, Open and Closed sets, Interior and Closure of a set, Limit point of a set in metric space.


Unit 3: Properties of derivable functions, Darboux’s and Rolle’s theorem. Notion of limit, continuity and differentiability for functions of several variables. The directional derivative, the total derivative, expression of total derivative in terms of partial derivatives.


Unit 5: Sequence and series of functions – Pointwise and Uniform convergence, Cauchy’s criterion, Weierstrass M-test, Abel’s test, Dirichlet’s test for uniform convergence of series of functions, Uniform convergence and Continuity of series of functions, Term by term differentiation and integration.

Reference Books:


3. Charles G. Denlinger, Elements of Real Analysis, Jones and Bartlett (Student Edition), 2011.


Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
Paper – VI: Differential Equations

Teaching: 3 Hours per Week
Duration of Examination: 3 Hours

Max. Marks: 85

Note: This paper is divided into FIVE Units. TWO questions will be set from each Unit. Candidates are required to attempt FIVE questions in all taking ONE question from each Unit. All questions carry equal marks.

Unit 1: Degree and order of a differential equation. Equations of first order and first degree. Equations in which the variables are separable. Homogeneous equations and equations reducible to homogeneous form. Linear equations and equations reducible to linear form. Exact differential equations and equations which can be made exact.

Unit 2: First order but higher degree differential equations solvable for x, y and p. Clairaut's form and singular solutions with Extraceous Loci. Linear differential equations with constant coefficients, Complimentary function and Particular integral.


Unit 4: Linear differential equations of second order. Linear independence of solutions. Solution by transformation of the equation by changing the dependent variable/the independent variable, Factorization of operators, Method of variation of parameters, Method of undetermined coefficients.


Reference Books:

Paper – VII: Numerical Analysis and Vector Calculus

Teaching: 3 Hours per Week

Duration of Examination: 3 Hours

Max. Marks: 85

Note: (i) This paper is divided into FIVE Units. TWO questions will be set from each Unit. Candidates are required to attempt FIVE questions in all taking ONE question from each Unit. All questions carry equal marks.

(ii) Non-Programmable Scientific Calculators are allowed.


Unit 3: Relation between the roots and coefficients of general polynomial equation in one variable, transformation of equations, Descarte’s rule of signs, solution of cubic equations by Cardon’s method, biquadratic equations by Ferari’s method.


Unit 4: Gauss elimination and Iterative methods (Jacobi and Gauss Seidal) for solving system of linear algebraic equations. Partial Pivoting method, ill conditioned systems, Numerical solutions of ordinary differential equations of first order with initial condition using Picard’s, Euler and modified Euler’s method.

Unit 5: Scalar and Vector point functions. Differentiation and integration of vector point functions. Directional derivative. Differential operators. Gradient, Divergence and Curl. Theorems of Gauss, Green, Stokes (without proof) and problems based on these theorems.

Reference Books:
Paper – VIII: Operations Research

Teaching : 3 Hours per Week

Duration of Examination : 3 Hours

Max. Marks: 85

Note: This paper is divided into FIVE Units. TWO questions will be set from each Unit. Candidates are required to attempt FIVE questions in all taking ONE question from each Unit. All questions carry equal marks.


Unit 2: Inventory Models – Definition, Types of inventory models, Classification of inventory models, Economic ordering quantity (EOQ), EOQ models without shortage, EOQ models with shortage, EOQ models with constraints.


Unit 5: Sequencing Models: Sequencing problems, processing n jobs through two machines. Processing n jobs through three machines, processing two jobs through m machines and processing n jobs through shortest cyclic Route Models. Minimal path problem (shortest Acyclic Route Models).

Reference Books:

Practical

Teaching: 2 hours per week per batch not more than 20 students.

Examination: Duration: 2 Hours

Scheme
Max.Marks  60
Min.Pass Marks  22

Distribution of Marks:
Two Practicals one from each group
20 Marks each  =  40 Marks
Practical Record  =  10 Marks
Viva-voce  =  10 Marks
Total Marks  =  60 Marks

The paper will contain TWO practicals. The candidates are required to attempt both practicals.

Practicals with Computer Programming in C Language.

Programming languages and problem solving on computers, Algorithm, Flow chart, Programming in C- Constants, Variables, Arithmetic and logical expressions, Input-Output, Conditional statements, Implementing loops in Programs, Defining and manipulation arrays and functions.

Group A:
1. Printing n terms of Fibonacci sequence.
2. Finding n!, \( \sum n, \sum n^2 \) etc.
3. Defining a function and finding sum of n terms of a series/sequence whose general term is given (e.g. \( a_n = \frac{n^2+3}{n+1} \)).
4. Printing Pascal’s triangle.
5. Finding gcd and lcm of two numbers by Euclid’s algorithm.
6. Checking prime/composite number.
7. Finding number of primes less than n, \( n \in \mathbb{Z} \).
8. Finding mean, standard deviation and \( ^nP_r, ^nC_r \) for different n and r.

Group B:

Note:
1. Each Candidate (Regular/non-Collegiate) has to prepare his/her practical record.
2. Each Candidate has to pass in Practical and Theory examinations separately.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
6. PSYCHOLOGY (HONS.)
B.Sc. Honours Part-II

SCHEME OF EXAMINATION:

<table>
<thead>
<tr>
<th>Papers</th>
<th>Nomenclature</th>
<th>Duration</th>
<th>Max. Marks</th>
<th>Min. Pass Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper-V</td>
<td>Systems and Theories of Psychology</td>
<td>3 Hrs.</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Paper-VI</td>
<td>Abnormal Psychology</td>
<td>3 Hrs.</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Paper-VII</td>
<td>Counselling Psychology</td>
<td>3 Hrs.</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Paper-VIII</td>
<td>Biological Basis of Behaviour</td>
<td>3 Hrs.</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>3 Hrs.</td>
<td>100</td>
<td>40</td>
</tr>
</tbody>
</table>

NOTE :-
1. There will be 4 Theory Papers in Psychology in B.A. Honours Part-II. Each paper will be of 3 hours. There will be a common paper for Arts and Science. There will be 3 Sections A, B and C in all the papers and will cover the entire course content of the paper.

Section-A will contain 10 questions of 20 words consisting of 1.5 marks each. Thus, Part-A will be of 15 marks.

Section-B will contain 7 questions of 50 words each, out of which students are required to attempt 5 questions. Each question will be of 3 marks. Thus, Part-B will be of 15 marks.

Section-C will contain 3 long questions each with internal choice. Each question will be of 15 marks.

Thus, Part-C will be of 45 marks.

For clarification the distribution of marks is tabulated as below:-

<table>
<thead>
<tr>
<th>B.A. Honours (Psychology) Part-II</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section</strong></td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td><strong>Total Marks</strong></td>
</tr>
</tbody>
</table>

2. Use of simple calculator will be allowed for statistical portions of all papers.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
Paper V - Systems and Theories of Psychology

Section-A
3. Functionalism: William James, Galton and Cattell

Section-B
4. Behaviorism: Thorndike, Pavlov, Watson and Tolman
5. Gestalt Psychology: Wertheimer, Koffka and Kohler.

Section-C
7. Psychoanalysis: Freud, Jung and Adler
8. Neo Freudians: Horney, Fromm, Sullivan and Erikson
9. Humanistic Psychology: Rogers and Maslow

Books Recommended:

Paper VI - Abnormal Psychology

Section-A
1. Mental Disorder: Definition, Indicators of Abnormality, Different Models and Classification. Formal and Diagnostic Classification. DSM-5 and ICD-10 Classification Systems, Mental Health Professionals.

Dy. Registrar (Academic-I)
University of Rajasthan
Jaipur
3. Clinical Assessment and Diagnosis : Basic Elements in Assessment, Social or Behavioral History; Physical, Neurological, Neuropsychological, Psychosocial Assessment. Ethical Issues in Assessment

**Section-B**

4. Anxiety, Obsessive Compulsive and Trauma Stressor related Disorders : Types, Clinical Picture and Causal Factors.


**Section-C**


**Books Recommended :**


**Paper VII - Counselling Psychology**

**Section-A**

10. Introduction: Meaning, Purpose and Goals; History and Current Trends in Counselling.

11. Counselling Process and Counselling Relationships: Nature and Determinants; Steps of Counselling

   Process; Initial Interview: Types and Conduction, Exploration and the Identification of Goals.

12. Personal and Professional Aspects: Personality and Background of the Counsellor; Professional

   Counselling - related activities; Ethical and legal aspects: Ethics, morality, law, and Counselling, Professional Codes of Ethics and Standards; Ethical decisions.

---

Dy. Registrar (Academic)
University of Rajasthan
Jaipur

49
Section-B


Section-C

7. Counselling with Diverse Populations: Aged Populations, Gender-based Counselling, Group Counselling and Crisis Intervention Counselling.
8. Counselling in a Multicultural Society: Counselling across Culture and Ethnicity, History of Multicultural Counselling, Issues in Multicultural Counselling, Counselling with specific Cultural groups.

Books Recommended:

Paper VIII - Biological Basis of Behaviour

Section-A
1. Introduction: Definition, Scope and Methods of studying Biological basis of Behaviour.
2. Cells of Nervous system: Structure and Functions; Communication within a Neuron, Communication between Neurons.

Section-B
4. Lateralization of Brain Functions: Difference between Left and Right Hemispheres, Cortical localization of Language, Aphasia.
5. Ingestive Behavior: Physiological Regulatory mechanism; Brain mechanism in Eating and Eating Disorders.
6. Sleep and Waking: Physiological mechanism of Sleep and Waking; Biological Clock and Sleep Disorders.

Section-C
7. Learning and Memory: Neural Mechanism of learning and Memory, Disorders of Memory.
8. Emotion, Stress and Health: Neural Mechanism of Fear, Anger and Aggression; Stress and Health; Hormones and Emotion.
9. Developmental Disorders: Genetic and Neurological basis for Autism, ADHD, Mental Retardation.

Books Recommended:
Practical

1. Method of Average Error- Muller Lyer Illusion
2. Biofeedback
3. Experiment on Classical Conditioning
4. Measurement of Emotions by Facial Expression
5. Word Association Test
6. High School Personality Questionnaire
7. Thematic Apperception Test
8. Level of Aspiration
9. Wechsler Adult Intelligence Scale
10. Neuropsychological Assessment
11. Assessment of Mental Heath
12. PGI Battery of Memory Dysfunction
Geography

Scheme of Examination

Max. Pass Marks 160 (40%)

Paper - V 3 hour duration  Introduction to Political Geography  Max. Marks 80
Paper - VI 3 hour duration  Cultural Geography  Max. Marks 80
Paper - VII 3 hour duration  Fundamentals of Biogeography  Max. Marks 80
Paper - VIII 3 hour duration  Statistical Methods in Geography  Max. Marks 80
Practical

Max. Marks 80

Notes

1. Students are permitted to use the stencils, simple calculator and log tables wherever needed in both theory and practical examinations.

2. There will be a common paper for Arts and Science.

3. Q.1 will be compulsory and will cover the entire course of the paper. Q.No. 1 of 20% marks of the maximum marks be set in two parts:
   (a) Part (a) will have ten items for locating on a map (to be supplied by examination centre) carrying 10% marks of the maximum marks and candidates shall attempt any five items.
   (b) Part (b) will have 10 short answer questions carrying 10% marks of the maximum marks and candidates shall attempt any five items.

4. Remaining 9 questions carrying equal marks will be set with three questions from each section of the syllabus.

5. Candidate will attempt 5 questions including question No. 1 in all selecting at least one question from each section.

6. Practical examination will be conducted by the board of examiners.

7. The candidate will have to pass in theory and practical separately.

SYLLABUS

Paper V: Introduction to Political Geography

Section A

Meaning, nature, scope and subject matter of political geography, political geography as a critical proposition approach to the study of political economy, maps and political geography, etc.
and united field theory, role of physical, demographic, economic, socio-cultural and historical factors in the emergence of states.

Section B

State as a politico-territorial phenomenon: changing nature of location, size and shape in political geography of states, political and administrative framework and its hierarchical relationship to unitary and federal forms of governance, boundaries and frontiers, functions and classification of international boundaries, global strategic views: the views of Mackinder, Spykman, de Seversky and Mahan and their relevance to contemporary world situation.

Section C

Underdevelopment and international policies, the North-South dialogue, SAARC and ASEAN the new international economic order, international tensions, West Asia and Indian Ocean region, regionalism in international relations, geopolitical dimensions of environment.

Recommended Readings:

Talukdar, A. 2009-10: राजनीतिक पृष्ठभूमि: स्थानों की परिस्थितियाँ, मेरठ. Shiva.

Paper VI: Cultural Geography

Section A

Definition, components of culture evolution and branches of cultural geography, cultural realms convergence and divergence process, cultural diversity in world, evolution of man, rise and dominance of homosapiens, their pattern of spread over the globe, primary races and their relationship with surrounding environment, landscape ecology.
Section B

Evolution of civilization: with special reference to mesopotamian, nile, indus and maiang-vaal valley civilization, indus valley civilization - development, growth, expansion, organization and causes for its downfall, characteristics and distribution of races, ethnic groups, linguistic families, religious groups.

Section C

Domestication of plants and animals, patterns of livelihood: various economic activities & cultural adaptations, agriculture, industrialization and modernization, technological changes and their spatial implications, social structure and technology, pattern of rural and urban society, social processes in the city, the city in the developing countries.

Recommended Readings:


Husain, M. 2007, Models in Geography. Rawat Publications, Jaipur


Paper VII: Fundamentals of Biogeography

Section A

Definition, scope and significance of biogeography, basic ecological principles: bio-energy cycle in the terrestrial ecosystem and energy budget of the earth; trophic and food chain; Darwin's theory of evolution, concept of biome and community.

Section B

Origin of life and flora, geographical distribution, major geographical distribution of plants and animals and their dispersal, distribution of plant life on the earth and its relation.
Section C

Ecological changes over space and time, ecosystem stability and disturbance, managed ecosystems: agricultural, urban, case studies of human induced ecological changes: desert ecosystems with specific reference to Rajasthan, wetland ecosystems with specific reference to the Rajasthan wetlands, agricultural ecosystems with specific reference to the Indira Gandhi National Park (IGNP), industrial effluent and its effect on fresh water biology and riverine ecosystem management practice (special reference to Rajasthan).

Recommended Readings:


Paper VIII: Statistical Methods in Geography

Section A

Sources of data: methods of data collection, processing analysis and results, questionnaire and schedule, frequency distributions, characteristics of frequency distribution: number of classes: class-interval, graphical representation data: histogram, frequency polygon, frequency curve and cumulative frequency curve (ogive).

Section B

Measures of central tendency: mean, median, mode; mean and percentage measures of central tendency; frequency distribution, distribution shape, skewness
variation and dispersion: measures of tendancy. Moment, simple correlation, etc.
Section-C


Books Recommended


King, L.L. Statistical Analysis in Geography. Prentice Hall, Englewood Cliffs, NJ.


Practicals

Scheme of examination

<table>
<thead>
<tr>
<th>Min. Pass Marks: 32</th>
<th>Max Marks: 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marks</td>
<td>Time</td>
</tr>
<tr>
<td>Written test</td>
<td>40</td>
</tr>
<tr>
<td>Field survey and viva voce</td>
<td>15+5</td>
</tr>
<tr>
<td>Record and viva voce</td>
<td>15+5</td>
</tr>
<tr>
<td>Total Marks</td>
<td>80</td>
</tr>
</tbody>
</table>

N.B. 1. There shall be 6 questions in written test selecting at least two questions from each section. Candidates are required to attempt 3 questions selecting 1 question from each section. All question carry equal marks.

SYLLABUS

Section A

Maps and diagrams: one dimensional (bar & pyramidal), two dimensional (square, rectangle wheel, circles & ring), three dimensional diagrams (cube, sphere and block pile), distributional maps: dot, isopleth, choropleth, areo-chromatic and choro-chromatic.
Section B

Measures of central tendency & dispersion: mean, median and mode; mean deviation; quartiles & standard deviation.

Section C

Plane table surveying: Equipments procedure, traversing open and closed surveys; methods: radial and intersection, concept of resectioning: two point problem, three point problem
Use of Indian pattern clinometer.

Recommended Readings:

शर्मा जे पी. 2012: प्रायोगिक पूर्वोल. रस्तोगी प्रकाशनसंस केंद्र.