UNIVERSITY OF RAJASTHAN
JAIPUR

SYLLABUS

Master in Computer Application

Semester Scheme

I & II Semester  2018-2019
III & IV Semester  2019-2020
V & VI Semester  2020-2021

[Signature]
Eligibility:
All the graduate (with 10+2+3) with at least 50% marks or CGPA of 3.0 in the UGC Seven Point Scale (45% marks or CGPA 2.5 in the UGC Seven Point Scale for SC/Non-Creamy layer OBC) in aggregate with Mathematics either at XII level or graduation level or BCA/B.Sc.(CS)/B.Sc.(IT) or B.E. from recognized university in Rajasthan and minimum 60% marks for non-Rajasthan candidate. Reservation as per the University Rules.

Scheme of Examination:

1. Each theory paper EoSE shall carry 100 marks The EoSE will be of 3 hours duration.
2. Candidate has to attempt five questions in all. All questions carry equal marks.
3. Question No. 1 covering whole syllabus will consist of 10 short answer questions carrying 2 marks each, based on knowledge, understanding and applications of the topics/texts covered in the syllabus.
4. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit (may have sub-parts). There will be an internal choice within the unit.
5. Each practical paper shall be of 4 hours duration on one day and carry 100 marks for the practical examination. The practical examination will involve 3 exercises, each of 20 marks, practical record of 15 marks and viva-voce examination of 25 marks.

Course Structure:

The details of the courses with code, title and the credits assign are as given below:
Abbreviations Used
Course Category
CCC: Compulsory Core Course
ECC: Elective Core Course
OEC: Open Elective Course
SSC: Supportive Course
SEM: Seminar
PRJ: Project Work
RP: Research Publication
Contact Hours
L: Lecture
T: Tutorial
P: Practical
S: Self Study
Relative Weights
IA: Internal Assessment (Attendance/Classroom Participation/Quiz/Home Assignment etc.)
ST: Sessional Test
EoSE: End of Semester Examination
MCA (Master of Computer Application) Syllabus as per new scheme: credit based semester system (Six Semesters in three years) with continuous assessment (30% with non-inclusion in cumulative Grade point average (CGPA)).

To obtain a professional Master's Degree MCA, a candidate is required to earn 180 credits with grade E or higher. For this each semester will offer 36 credits. To earn credits for a paper, a candidate shall be required to obtain grade E or higher (or equivalent marks percentage) in the theory/practical examination. A candidate has to pass in the continuous assessment (internal) as well as in that paper separately. However, the grade point/marks obtained in the continuous assessment will not be included in Semester Grade Point Average (SGPA). In continuous assessment and End of Semester Examination (EoSE) separate grades will be awarded. The candidate will not be permitted to appear in EoSE of a particular credit (i) if he/she does not meet out 75% attendance requirement, or (ii) he/she fails to secure a Semester Grade Point Average (SGPA) of 1.5 in the continuous assessment.

The Credit Courses have been classified as:

a. Compulsory Core Courses (CCC)
b. Elective Core Courses (ECC)

A course is identified by a course code designated by a string of six alphanumeric characters and a course title. In a course code the first three characters of the string indicate the degree/course name in short and the later three alphanumeric characters designate a particular course. In the case of compulsory core course the fourth character identifies the semester numeric digit and in case of the elective core courses the fourth character indicates the cluster of specialization. For compulsory or elective theory core courses the fifth is '0', for laboratory core course it is '1' and for project/seminar course it is 2 and the sixth digit indicates number of the course in that category.
# MCA-First Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Course category</th>
<th>Credit</th>
<th>Contact Hours per Week</th>
<th>EoSE * Duration(Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCA 701</td>
<td>Programming in C</td>
<td>CCC</td>
<td>4</td>
<td>3 1 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td></td>
<td>MCA 702</td>
<td>Database Management Systems</td>
<td>CCC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td></td>
<td>MCA 703</td>
<td>Algorithms and Data Structures</td>
<td>CCC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td></td>
<td>MCA 704</td>
<td>Computer Architecture</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td></td>
<td>MCA 705</td>
<td>Business Accounting Fundamentals</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td></td>
<td>MCA 706</td>
<td>Discrete Mathematics</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td></td>
<td>MCA 711</td>
<td>Programming in C &amp; DS Lab</td>
<td>CCC</td>
<td>4</td>
<td>0 0 6 0</td>
<td>0 4</td>
</tr>
<tr>
<td></td>
<td>MCA 712</td>
<td>DBMS Lab</td>
<td>CCC</td>
<td>4</td>
<td>0 0 6 0</td>
<td>0 4</td>
</tr>
<tr>
<td></td>
<td>MCA 713</td>
<td>Office Management Lab</td>
<td>ECC</td>
<td>4</td>
<td>0 0 6 0</td>
<td>0 4</td>
</tr>
</tbody>
</table>

*EoSE- End of Semester Examination

# MCA-Second Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Course category</th>
<th>Credit</th>
<th>Contact Hours per Week</th>
<th>EoSE * Duration(Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCA 801</td>
<td>Object Oriented Programming Using C++</td>
<td>CCC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td></td>
<td>MCA 802</td>
<td>Data Communication and Computer Networks</td>
<td>CCC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td></td>
<td>MCA 803</td>
<td>Web Design and Development</td>
<td>CCC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td></td>
<td>MCA 804</td>
<td>Operating System Fundamentals</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td></td>
<td>MCA 805</td>
<td>Computer Oriented Numerical Methods</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td></td>
<td>MCA 806</td>
<td>Computer Graphics</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td></td>
<td>MCA 811</td>
<td>Programming in C++ Lab</td>
<td>CCC</td>
<td>4</td>
<td>0 0 6 0</td>
<td>0 4</td>
</tr>
<tr>
<td></td>
<td>MCA 812</td>
<td>Web Authoring Tools Lab</td>
<td>CCC</td>
<td>4</td>
<td>0 0 6 0</td>
<td>0 4</td>
</tr>
<tr>
<td></td>
<td>MCA 813</td>
<td>(Lab)</td>
<td>ECC</td>
<td>4</td>
<td>0 0 6 0</td>
<td>0 4</td>
</tr>
</tbody>
</table>

*EoSE- End of Semester Examination
## MCA-Third Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Course category</th>
<th>Credit</th>
<th>Contact Hours per Week</th>
<th>EoSE * Duration(Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCA 901</td>
<td>Programming in Java</td>
<td>CCC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>1</td>
<td>MCA 902</td>
<td>Application Development Using .NET Frame Work</td>
<td>CCC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>2</td>
<td>MCA 903</td>
<td>Data Warehousing &amp; Data Mining</td>
<td>CCC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>3</td>
<td>MCA 904</td>
<td>System Analysis &amp; Designing Concepts</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>4</td>
<td>MCA 905</td>
<td>Linux OS and Shell Programming</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>5</td>
<td>MCA 906</td>
<td>Theory of Computation</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>6</td>
<td>MCA 911</td>
<td>Programming in Java Lab</td>
<td>CCC</td>
<td>4</td>
<td>0 0 6</td>
<td>0 4</td>
</tr>
<tr>
<td>7</td>
<td>MCA 912</td>
<td>.NET Lab</td>
<td>CCC</td>
<td>4</td>
<td>0 0 6</td>
<td>0 4</td>
</tr>
<tr>
<td>8</td>
<td>MCA 913</td>
<td>Linux OS and Shell Programming Lab</td>
<td>ECC</td>
<td>4</td>
<td>0 0 6</td>
<td>0 4</td>
</tr>
</tbody>
</table>

*EoSE- End of Semester Examination

## MCA-Fourth Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Course category</th>
<th>Credit</th>
<th>Contact Hours per Week</th>
<th>EoSE * Duration(Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCA X01</td>
<td>Advanced Java Programming &amp; Technology</td>
<td>CCC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>1</td>
<td>MCA X02</td>
<td>Advanced Database Systems</td>
<td>CCC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>2</td>
<td>MCA X03</td>
<td>Software Engineering</td>
<td>CCC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>3</td>
<td>MCA X04</td>
<td>Computer Based Optimization Techniques</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>4</td>
<td>MCA X05</td>
<td>E-Commerce</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>5</td>
<td>MCA X06</td>
<td>Elective-I ( Any One in Elective Group – I )</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>6</td>
<td>MCA X11</td>
<td>Advanced Java Lab</td>
<td>CCC</td>
<td>4</td>
<td>0 0 6</td>
<td>0 4</td>
</tr>
<tr>
<td>7</td>
<td>MCA X12</td>
<td>Advanced DBMS Lab (Oracle/DB2/MySQL)</td>
<td>CCC</td>
<td>4</td>
<td>0 0 6</td>
<td>0 4</td>
</tr>
<tr>
<td>8</td>
<td>MCA X23</td>
<td>Mini Project</td>
<td>ECC</td>
<td>4</td>
<td>0 0 6</td>
<td>0 4</td>
</tr>
</tbody>
</table>

*EoSE- End of Semester Examination
## MCA-Fifth Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Course category</th>
<th>Credit</th>
<th>Contact Hours per Week</th>
<th>EoSE * Duration(Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>1</td>
<td>MCA Y01</td>
<td>Information Security &amp; Cryptography</td>
<td>CCC</td>
<td>4</td>
<td>3 1 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MCA Y02</td>
<td>Analysis and Design of Algorithms</td>
<td>CCC</td>
<td>4</td>
<td>3 1 0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MCA Y03</td>
<td>Simulation &amp; Modeling</td>
<td>CCC</td>
<td>4</td>
<td>3 1 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MCA Y04</td>
<td>Wireless Technology</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Elective - 2(Any One in Elective Group -2)</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Elective - 3(Any One in Elective Group -3)</td>
<td>ECC</td>
<td>4</td>
<td>3 1 0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MCA Y11</td>
<td>ADA Lab</td>
<td>CCC</td>
<td>4</td>
<td>0 0 6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MCA Y22</td>
<td>Mini Project</td>
<td>CCC</td>
<td>4</td>
<td>0 0 6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>MCA Y23</td>
<td>Seminar</td>
<td>ECC</td>
<td>4</td>
<td>0 0 6</td>
<td></td>
</tr>
</tbody>
</table>

*EoSE- End of Semester Examination

## MCA-Sixth Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Course category</th>
<th>Credit</th>
<th>Contact Hours per Week</th>
<th>EoSE * Duration(Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>1</td>
<td>MCA Z21</td>
<td>Major Project: Minimum Four Months in an Organization approved by the Director/Head of the Centre/Department</td>
<td>CCC</td>
<td>36</td>
<td>0 0 42</td>
<td>0 4</td>
</tr>
</tbody>
</table>

*EoSE- End of Semester Examination

## Elective Core Courses:

<table>
<thead>
<tr>
<th>Elective Course Code</th>
<th>Course Category</th>
<th>Subject Title</th>
<th>Prerequisite</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCA A01</td>
<td>ECC</td>
<td>Artificial Intelligence</td>
<td>-</td>
<td>IV</td>
</tr>
<tr>
<td>MCA A02</td>
<td>ECC</td>
<td>Network Management</td>
<td>-</td>
<td>IV</td>
</tr>
<tr>
<td>MCA A03</td>
<td>ECC</td>
<td>Compiler Design</td>
<td>-</td>
<td>IV</td>
</tr>
<tr>
<td>MCA A04</td>
<td>ECC</td>
<td>Multimedia Systems</td>
<td>-</td>
<td>IV</td>
</tr>
<tr>
<td>MCA B01</td>
<td>ECC</td>
<td>Bio-Informatics</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>MCA B02</td>
<td>ECC</td>
<td>Geo-Informatics</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>MCA B03</td>
<td>ECC</td>
<td>ERP Systems</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>MCA B04</td>
<td>ECC</td>
<td>Embedded Systems</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>MCA C01</td>
<td>ECC</td>
<td>Mobile Communication &amp; Network</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>MCA C02</td>
<td>ECC</td>
<td>Object Oriented Software Engineering</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>MCA C03</td>
<td>ECC</td>
<td>Web Information System</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>MCA C04</td>
<td>ECC</td>
<td>Pattern Recognition System</td>
<td>-</td>
<td>V</td>
</tr>
</tbody>
</table>
Course Contents in Detail - MCA I Semester

Note:
1. Papers MCA 701, MCA 702, MCA 703, MCA 711 and MCA 712 are compulsory (CCC) and Papers MCA 704, MCA 705, MCA 706 and MCA 713 are elective (ECC).
2. Continuous assessment (Internal) will be done by the concerned teacher on the basis of test papers, regularity in the class and performance of the student. Maximum marks in continuous assessment of each paper is 100.

MCA 701 : Programming in C

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question (may have sub parts) from each unit. There will be an internal choice within the unit.

Unit-I
Problem solving with computers, Flow charts, Basic concepts of programming languages, programming domains. C Character set, variables and constants, keywords, Type checking, Scope and lifetime data types. Operators, Instructions, assignment statements, arithmetic expression, comment statements, simple input and output, Boolean expressions.

Unit-II
Control structures, decision control structure, loop control structure, case control structure. String and character handling, arrays and string processing, data validation examples.
Functions, function prototype, subroutines, scope and lifetime of identifiers parameter passing mechanism, recursion.

Unit-III
User defined data types, enumerated data types, unions, structures, array of structures, Unions of structures. Storage class specifies, Pre processors header files and standard lib, Functions. Pointer : Definition and uses of pointers, arithmetic, pointers and arrays, pointers and function, pointer to pointer, pointer to structures. Dynamic memory allocation.

Unit-IV
Console Input and Output functions, data files, operations on data files, text and binary files, formatted data files. Implementation of simple data structures : Stacks, Queues, Linked Lists, trees, searching and sorting algorithms. Interaction with hardware, system calls, command line arguments, operations on bits, Bit-fields. Graphics in C

Recommended reference books:
4. Deitel HM & Deitel JP; C How to program, 5th Edn; Pearson Pub.
MCA 702: Database Management Systems

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I
Overview of DBMS: Basic concepts, Database system architecture, Schemas, Instances, Components, Database users, Three-tier architecture, Centralized, Distributed and Client/Server architecture, Data independence. Database models: Entity relationship model, hierarchical model, relational model, network model, Object-Oriented data model.
Data Modeling using ER Model: ER model concepts, ER diagram, mapping constraints, Keys, Generalization, aggregation, reduction of ER diagrams to tables, extended ER model, Relationship of higher degree. Enhanced ER Model: Concepts, Specialization, Generalization, Data abstraction, Knowledge representation and University EER Model as example.

Unit-II
Relational Model: Concepts, Constraints, Languages, Relational database design by ER & EER mapping, Relational algebra relational calculus.
Normalization: Functional dependencies, Normal forms – First, second, third and BCNF, inclusion dependencies, loss join & decompositions, normalization using FD, MVD and JDs, Alternative approach to database design.

Unit-III
Data storage: Magnetic disk and flash storage, RAID technology, tertiary storage, Indexing structure, Single and multiple level.
Transaction processing: Transactions atomicity, durability, serializability and isolation. Concurrency control techniques – Two phase locking, timestamp ordering, multiversion, Granularity locking techniques, Database recovery techniques based on deferred & immediate updates and shadow paging.

Unit-IV
SQL: Characteristics of SQL, advantages, data types in SQL, SQL Operators, types of SQL commands, Tables indexes, Views Nulls, Aggregate Functions, Select statement, Sub queries, Insert, Update and Delete operations, Joins, Unions. Introduction to Embedded SQL, Dynamic SQL & SQLJ, Data security, Integrity and concurrency, Backup and recovery, numeric and text data in SQL dealing with dates, Synonyms, Snapshots, Programming with SQL.

Reference Books:
MCA 703: Algorithm and Data Structure

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I

Algorithms, pseudo code, efficiency of algorithms, analyzing algorithms and problems, complexity measures, basic time analysis of an algorithm, space complexity. Data abstraction and basic data structures, data types and abstract data types.
Basic data structure – Arrays, Stack, Queues and their applications, linked and sequential representation of arrays, stacks & queue.

Unit-II

Linked lists, representation of linked list in memory, insertion, deletion and searching of linked list, two way lists. Arithmetic expressions, Polish notations, dequeue and priority queues.

Trees: Basic concepts, linked representation, representation in continuous memory. Binary and N-ary trees, Searching, insertion and deletion in binary search tree, traversing algorithms using stacks, header nodes threads.

Unit-III

Graphs and their representations, sequential representation - Adjacent matrix, linked representation of graphs, operations on graph, traversing a graph. DFS and BFS algorithms. Heap structures, heap sort algorithm.

Unit-IV

Sorting and Searching: Use various data structures for searching and sorting, Internal and external sorting techniques, linear and binary search, Hash tables & Hashed searching, Bubble sort, Insertion sort, Selection sort, Merge sort, Radix sort, quick sort.

Recommended reference books

4. Jean-Paul Tremblay and Paul G. Sorenson, An Introduction to Data Structures with applications TMH Publishing Co. Ltd.
5. A. Michael Berman: Data Structures via C++ Oxford University Press.
6. Jean-Paul Tremblay and Paul G. Sorenson, An Introduction to Data Structures with application, TMH Publishing Co. Ltd.
MCA-704: Computer Architecture

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I

Logic gates, basic combinational logic, Boolean functions & Expressions, multiplexer, decoders, encoders, comparators, adder and substructures, BCD to 7 segment decoder, sequential circuits, RS, JK, D and T flip flops, counter and shift register, Clock and Timing events.

Unit-II

Addressing methods and machine program sequencing memory location addresses, encoding of information, instructions types, Instruction format and instructions sequencing addressing modes, paging, relative, indirect and indexed addressing.

Basic of Computer organization: System buses and instruction cycles, memory subsystem organization and interfacing, I/O subsystem organization and interfacing, Register transfer languages.

Unit-III

CPU design: Specifying a CPU, design and implementation of a simple CPU (fetching instructions from memory decoding and executing instructions, establishing required data paths, design of ALU, Number representation, Arithmetic operations, floating point arithmetic. Design of the control unit and design verification), design and implementation of a simple micro-sequencer.

Unit-IV

Memory Organization: Main memory concepts, Auxiliary memory, Associative memory, virtual memory & paging and cache memory organization.

Input and Output organization: Asynchronous data transfer, programmed I/O Interrupts (types, processing of interrupts implementing interrupts inside CPU) Direct memory access, I/O processors, serial communication.

Recommended reference/Text Books

Dy. Registrar
(Academic)
University of P. Justhan
MCA705: Business Accounting and Financial Management

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper - 3 hours; Max. Marks - 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit.
   There will be an internal choice within the unit.

Unit I

Management Accounting – Nature and Scope of Management Accounting, Difference between Cost Accounting and Management Accounting, Cost Control, Deducting and Management

Unit II


Unit III

Final Accounts: preparation of Final Accounts, Trading accounts, Profit accounts, Loss accounts, and Balance Sheet covering simple adjustments.


Unit IV

Budgetary Control: Meaning, Advantages and Limitations of Budgetary Control, Procedure for setting up Budgetary Control, Type of Budgets, Advantages and Limitations of Cash Budget and Preparation of Cash Budget.

Marginal Costing - Meaning, Advantages and Limitations of Marginal Costing, Break Even Point, Margin of Safety, Profit Volume Ratio, Simple Applications of Marginal Costing. (including simple problems of make, buy and product).

Recommended reference books:
4. Anil Chowdhary; Fundamentals of Accounting and Financial Analysis; Pearson Education.

MCA 706: Discrete Mathematics

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I

Set Theory: Ordered set, Cartesian product of sets, partition of set, countable and uncountable sets, Russell’s paradox, principle of inclusion-exclusion, mathematical induction.


Modules function, greatest integer function, hash function, composition of function, pigeonhole principle.

Groups, Rings And Fields: Definition and simple examples of Groups, Rings Integral Domains, fields.

Unit-II

Logic & Proofs: Propositions, Basic Logical operations, truth tables, Logical equivalence, Algebra of Propositions, conditional and Bi-conditional propositions, de Morgan laws for logic, Tautologies & contradiction, Quantifiers, Arguments, Logic Inference, Direct Proof by contradiction.

Dy. Registrar
(Academic)
University of Rajasthan
Lattices, Boolean Algebra, Switching Circuits & Digital Logic Gates: Definition & examples of lattices, elementary properties of lattices, distributive lattice, Bounded lattice, Complemented lattice, Dual of lattice.

Boolean Algebra, Boundaries laws, absorption laws, Idempotent laws, Involution Laws, cancellation laws, associative laws, De’ Morgan’s laws, Boolean expressions and functions, Disjunctive normal form, conjunctive normal form.

Switching circuits, Equivalent switching circuits, combination of switches, digital logic gates.

Unit-III

Graph Theory : Simple and multi-graph, Types of simple graph ( Regular graph, compete graph, Bipartite graph, cycle, wheel, planner graph, complementary graph) directed graph, Connectedness, in graph, Euler graph, Hamiltonian graph, weighted graph, shortest path problems, traveling salesman problems, Euler formula, operations on graphs, sub graph colouring of graph, chromatic number.

Trees: Properties of Trees, eccentricity of vertex, centre of graph, Radius & diameter of graph, sub tree, Rooted tree, Binary tree, M-ary tree, Height of Binary tree, Spanning tree, Kruskal’s Algorithm, Minimal spanning tree.

Unit-IV

Recurrence Relation & Generating Function: Discrete numeric function, generating function, Recurrence relations, Homogeneous linear Recurrence relation with constant coefficients.
Finite State Machine : Finite state machines as models of physical systems, equivalent machine, finite state machine as language recognizes, finite state language of type-3 languages.

Recommended Books:

Practical Examination:

Each practical paper shall be of 4 hours duration on one day and carry 100 marks for the practical examination. The practical examination will involve 3 exercises, each of 20 marks, practical record of 15 marks and viva-voce examination of 25 marks.

MCA 711: Programming in C & DS Lab
Practical Lab
Examination: Practical Examination
Lab Exercise on Theory Paper MCA 701 and MCA 703

MCA 712: DBMS Lab
Practical Lab
Examination: Practical Examination
Lab Exercise on Theory Paper MCA 702

MCA 713: Office Management Lab
Practical Lab
Examination: Practical Examination
Word Processing, Spread sheet program, data processing, Presentation Program, Web Surfing and other Internet services.
Syllabus of MCA II Semester

Note:

1. Papers MCA 801, MCA 802, MCA 803, MCA 811 and MCA 812 are compulsory (CCC) and Papers MCA 804, MCA 805, MCA 806 and MCA 813 are elective (ECC).
2. Continuous assessment (Internal) will be done by the concerned teacher on the basis of test papers, regularity in the class and performance of the student. Maximum marks in continuous assessment of each paper is 100.

MCA-801: Object Oriented Programming Using C++

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:

1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I


C++ Basics : Preprocessors, comments, Data types, Operators, Expressions, Loops and Decisions, Arrays and String handling, Modular programming with Functions, Structure and Unions.

Unit II

Pointers and Run time binding, Dynamic memory allocation, Storage class specifies. Classes, Member functions, Objects, Arrays of objects. Pointers : Addresses and pointers, pointer & arrays, pointer & functions, use of pointers in strings and pointers to objects. and Classes, Nested classes, Constructors, Destructors, Inline member functions, Friend Functions, Static member function.

Inheritance, Single Inheritance, types of base classes, types of derivations, multiple inheritance, container classes, member access control.

Unit-III

Functions Overloading, Operator Overloading, polymorphism, early binding polymorphism with pointers, Unary and Binary Operator Overloading, Overload Assignment Operator, Copy Constructor, Data Conversion between Objects of different classes. C++ Free Store.
Virtual Function : Virtual Function, late binding, pure virtual functions, abstract classes, Generic Programming with Templates, Friend function, Overloaded Function Templates, Multiple Arguments function Template.

Unit-IV

Stream Computation with Console, Stream Computation with Files, opening and closing of file stream state member function binary file operations structures and file operations, classes and file operations, random access file processing. Exception handling: Exception handling mechanism throwing mechanism, Catching mechanism. Implementation of basic data structures in C++ such as arrays, stack, queues, linked list and sequential representation.

Recommended Books

4. Venugopal, Rajkumar; Mastering C++; Tata Mergrow Hill, 2006.
6. Deitel and deitel; How to program C++, Addison Wesley, Pearson Education Aisa

MCA 802: Data Communication and Computer Network

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I


Network Models : Internet model, OSI seven layer network model, Functions of OSI layers, LAN technologies – protocols and standards, LAN hardware, TCP/IP (Protocols, architecture, layers, services).

Unit-II

Data transmission: Data Communication Systems, DTE-DCE Interface, Modems, Transmission media( Guided & Unguided), Multiplexing – FDM, WDM, TDM, Digital Subscriber Line (Operation, Layers, Traffic control), FTTC, Error detection and correction; Microwave-Electromagnetic spectrum, Characteristics, use of MIW in
communications; PM Microwave Radio Repeaters, Satellite- Artificial Satellite, Geosynchronous Satellites, Orbital classification, Spacing and Frequency allocation, Multiple accessing.
Optical fiber communication: Basic concept of light propagation, Fiber Cables, Light sources, Optical Detectors, Fiber cable losses, wave division multiplexing, fiber distributed data interface, the fiber channel

Unit-III

Internet: Internet Architecture, Internet protocol and datagram, Routing protocols, UDP, Internet standard services, DNS.

Networking Technology, ISDN (Services, Channels, Layers, Broadband ISDN), Cable Modem System, SMDS, Frame relay, fast Ethernet, 100VG-any LAN and Gigabit Ethernet, FDDI and CDDI, Asynchronous Transfer, SONET (architecture, Layers, frame, Applications), DWDM Switching and Virtual LAN, Non-ATM Virtual LANs IEEE 802.1Q VLAN standard, X.25 protocols, ATM (Architecture, layers, classes, services).

Networking and Internetworking Devices: Repeaters, Bridges, routers, Gateways and roles of these devices in communication.

Unit-IV

Network Performance, Analytical approaches, simulation, traffic monitoring, Network Management- SNMP, RMON and RMNv2, TMN, Directory services and network management.

Issue related to network reliability and security, SSL and VPN, Introduction only to firewalls and Kerberos, Cyber Laws.

Recommended Books;
6. M.A. Miller, Data and Network Communications, Thomsen Kearnsing
8. Fred Harshal, Data Communications Communications, Networks, Pearson Education Asia.

MCA 803: Web Design and Development

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I

Creating and Maintaining Web Sites; Planning, Navigation and Themes, Site types and Architecture, Elements of a Web page( Pages & Layout, Text, colour, Images, GUI Forms & GUI

Unit-II

Introduction of HTML and XHTML: introduction markup language, editing HTML & XHTML: Common tags, headers, text styles linking, images, formatting text, horizontal rules and more line breaks unordered lists nested and ordered lists, basic HTML/XHTML tables: intermediate tables and formatting, forms, more complex forms, internal linking, creating and using image maps.

Unit-III

Java script- introduction to scripting language, memory concepts, arithmetic decision making, Java script control structures, Java script functions, program modules in java script, function definitions duration of identifiers, scope rules, recursion java script global functions.

Java script arrays: introduction, array declaring and allocating memory, passing arrays to functions, multiple subscripted arrays, java script objects-introduction, math, string, data, Boolean and number objects etc.

Introduction to PHP: Advantages of PHP, functions, Data types, Arrays, SQL, Connecting Databases using ODBC, Files, Forms, Images, IMap objects.

Unit-IV

Dynamic HTML: CSS: introduction- inline styles, creating style sheets with the style element, conflicting styles, linking external style sheets, positioning elements, background element dimensions, text flow and the box model, user style sheets.

Dynamic HTML; object model and collections; introduction object referencing collections all and children, dynamic style, dynamic positioning using the frames collection, navigator object.

Dynamic HTML; event model: introduction, event ON CLICK, event ON LOAD – error handling with ON ERROR, tracking the mouse with event more DHTML, events. Filters and Transitions; Dynamical HTML; Client side scripting with VB script. Introduction - Operators-Data Types and control structures - VB Script functions-arrays-string manipulation classes and objects.

Recommended Books:

5. G. Roverston; Hands on HTML.. BPB Publication
7. Joel Sklar: Principles of Web Design BPB Publication
MCA 804 : Operating System Fundamentals

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
4. Candidate has to attempt five questions in all. All questions carry equal marks.
5. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
6. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit.
   There will be an internal choice within the unit.

Unit-I

Necessity of an Operating System, Operating system structure, Evolution of Operating System (multiprogramming systems, batch systems, timesharing system, distributed systems and Real Time system), Operating system structure, Operating system components and services, system calls, system programs, Virtual machines.

Unit-II

Process management: process concept, process scheduling, cooperating processes, Threads, Interprocess communication, CPU scheduling criteria, Scheduling algorithms, Multiple-processor scheduling, Real time scheduling and Algorithm evaluation.


Unit-III


Unit-IV


Recommended books:


MCA-805 – Computer Oriented Numerical Methods

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I


Unit-II

Interpolation and Numerical differentiation: Newton’s Forward Difference Interpolation, Newton’s Backward Difference Interpolation, Lagrange’s Interpolation Formula.

Numerical Integration Definite Integral, Trapezoid Rule, Simpson’s Rule, Romberg Algorithm, Adaptive Simpson’s Scheme, Gaussian Quadrature Formulas.

Unit-III

Solution of Linear Equations: Gaussian Elimination, Gaussian Elimination with Scaled Partial Pivoting, Iterative Solution of Linear Systems, Gauss-Seidel Iteration Method, Power Methods, Eigenvalues and Eigenvectors.

Unit-IV

Smoothing of Data and the Method of Least squares, Least Squares curve fitting, Straight line and non
Linear curve fitting, Cubic splines, Chebyshev polynomials.

Random Numbers, Estimation of Areas and Volumes by Monte Carlo Techniques.

Recommended Books;


MCA-806: Computer Graphics

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I


Unit-II


Dy. Registrar
(Academic)
University of Rajasthan
Unit-III


Unit-IV

Computer Animation : Design of Animation Sequence, General computer Animation Function- Raster animations, Key Frame system, Morphing, Simulating Accelerations, Motion Specifications, Kinematics and Dynamics.

Recommended Books:
3. Ronger D.F.; Elements of Computer Graphics;

Practical Examination:

Each practical paper shall be of 4 hours duration on one day and carry 100 marks for the practical examination. The practical examination will involve 3 exercises, each of 20 marks, practical record of 15 marks and viva-voce examination of 25 marks.

MCA 811: Programming in C++ Lab

Practical Lab
Examination: Practical Examination-
Exercises based on the Theory paper MCA 801.

MCA 812: Web authoring Tools Lab

Practical Lab :
Examination: Practical Examination-
Exercises based on the Theory paper MCA 803.

MCA 813: Computer Oriented Numerical Methods Lab
Practical Lab
Examination: Practical Examination-
Exercises based on the Theory paper MCA 805.
Syllabus of MCA III Semester

Note:
1. Papers MCA 901, MCA 902, MCA 903, MCA 911 and MCA 912 are compulsory (CCC) and Papers MCA 904, MCA 905, MCA 906 and MCA 913 are elective (ECC).
2. Continuous assessment (Internal) will be done by the concerned teacher on the basis of test papers, regularity in the class and performance of the student. Maximum marks in continuous assessment of each paper is 100.

MCA-901: Programming in Java

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I

Introduction to OOP: Paradigms of Programming Languages – Basic concepts of Object Oriented Programming, Objects and Classes, Data abstraction and Encapsulation, Inheritance, Polymorphism, Dynamic binding, Message communication: Benefits of OOP; application of OOPs.

Introduction to Java: History, Java features, Java Environment- JDK, API. Types of Java program, Creating and Executing a Java program; Java tokens: Keywords, Character set, Identifiers, Literals, Separator; Java Virtual Machine (JVM); Command Line Arguments; Comments in Java program.

Elements: Constants Variables, Data types, Scope of variables, Type casting. Operators: Arithmetic, Logical, Bit wise operator, Increment and Decrement, Relational, Assignment, Conditional, Special operator, Expressions, Evaluation of expressions.

Unit-II

Decision Making and Branching: If statement and its types, switch statement; Decision making and looping - while loop, do While, for loop, break labeled loop, continue statement.

Arrays: One Dimensional Array, Multidimensional Array, Vectors, Wrapper classes; String Array, String Methods, String Buffer Class.

Class and Objects: Defining a class, Methods, Creating objects, Accessing class members, Constructors, Method overloading, Static members, Nesting of Methods, this keyword, command line input.

Unit-III

Packages: Java API Packages—System Packages, Naming Conventions, Creating & Accessing a Packages, Finding Packages and CLASSPATH, Adding Class to a Packages, Hiding Classes.

JAVA Streams: Data Flow with Java Streams, Input Streams, Output Streams.

Exception Handling: Limitations of Error handling, Advantages of Exception Handling, Types of Errors, Basics of Exception Handling, try blocks, throwing an exception, catching an exception, finally statement, declaring and throwing custom Exceptions.

Multithreading: creating threads, life of a thread, defining & running thread, thread methods, thread priority, synchronization, implementing run-able interface, thread scheduling.

Unit-IV


GUI in Java: applet and it uses; Abstract window tool kit, Event Handlers, Event Listeners. AWT Controls and Event Handling—Labels, Text Component, ActionEvent, Buttons, CheckBoxes, ItemEvent, Choice, Scrollbars, Layout Managers, Input Events, Menus; Introduction to Swing

Networking: Java utility for networking, Manipulating URLs, reading a file on a Web server. Establishing simple Client Server.

Recommended Reference/Text Books:

MCA 902 : Application Development Using, NET Frame Work

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I


Elements: Variable and constants, data types, declaration. Operators, types, precedence, Expressions. Program flow, Decision statements, if...then...else; select...case, Loop statements, while... and while, do...loop, for...next, for...each...next.

Types: Value data types, Structures, Enumerations, Reference data types, Single-dimensional, Multi-dimensional arrays, jagged arrays and dynamic arrays.

Unit-II

Windows Programming: Creating windows forms, windows controls, Button, Check box, Combo box, Label, List box, Radio Button, Text box, Events, Click, close deactivate, Load, mousemove, mousedown, mouseup.
Menus and Dialog Boxes: Creating menus, menu items, context menu, Using dialog boxes, show dialog() method.

ADO.NET : Architecture of ADO.NET, ADO.NET providers, Connection, Command, Data Adapter, Dataset, Connecting to Data Source, Accessing Data with Data set and Data reader, Create an ADO.NET application, Using Stored Procedures.

Unit-III

ASP.NET Features: Application of States and Structure; Change the Home Directory in IIS- Add a Virtual Directory in IIS- Set a Default Document for IIS – Change Log File Properties for IIS-Stop, Start, or Pause a Web Site.

Unit-IV


Web Services and WCF : Web Services protocol and standards – WSDL Documents-Overview of UDDI – Calling a Web Service from a Browser-Calling a Web Service by Using a proxy – Creating a simple web service – Creating and Calling a Web Service by Using Visual Studio.NET Architecture of WCF, WCF Client

Reference Books:
5. Steven Holzner; ASP.NET 4.0 (Cover C# & VB ) Black Book; Dreamtech Press.
6. Steven Holzner; .NET Programming Black Book; Dreamtech Press.

MCA 903 : Data Warehousing & Data Mining

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I

Introduction to Data Warehousing : Introduction, Data Warehouse importance and functions, Multidimensional Data Model, Data Matting and it’s usage, Cost of data marting, Metadata, Data warehouse Architecture, Building a Data warehouse, Implementation, Further Development, Planning and Project Management of Data Warehouse.

Unit-II

Data Mining : Data Warehousing to Data Mining, Evolution Analysis, Classification of Data Mining Systems, Architecture of data mining system, Major Issues in Data Mining. Data preprocessing : Needs preprocessing the Data, Data Cleaning, Data Integration and Transformation, Data Reduction, Dieselization and Concept Hierarchy Generation; Analysis of Attributes Relevance. Discriminating between Different Classes. Data Warehouse and OLAP Technology for Data Mining.
Unit-III


Unit-IV

Clustering and Applications of Data Mining: Cluster Analysis, Types of Data Categorization of Major Clustering Methods, Kmeans, Partitioning Methods, Hierarchical Methods, Density Based Methods, Grid Based Methods, Model-Based Clustering Methods, Clustering High Dimensional Data, Constraint Based Cluster Analysis, Outlier Analysis, Data Mining Applications.

Feature Trends: Multidimensional Analysis and Descriptive Mining of Complex Data Objects, Spatial Databases, Multimedia Databases, Time Series and Sequence Data, Text Databases, Web Mining, Spatial mining, Temporal Mining, Applications and Trends in Data Mining.

Text/Reference Books:
2. Data Mining – Concepts and Techniques- JIA WEI HAN & MICHELINE KAMBER Hareourt India.
3. Data Warehousing ; Reema Thareja; Oxford
4. Data Mining Introductory and advanced topics MARGARET H DUNHAM PEARSON EDUCATION.
5. Data Warehousing in Real World Anahory, Pearson Education.
8. Data Warehousing Fundamentals- PAULRAJ PONNAIAH WILLEY STUDENT EDN.

MCA-904: System Analysis and Design Concepts

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I

System Concepts and the information systems Environment: The System concept Definition, System Central Objectives, Elements of a system, Environment, Boundaries and interfaces. Types of systems- Physical or Abstract systems, Open or Closed systems, Role, Need and Responsibility of System Analyst Introduction to system Development approaches- Data Oriented and Object Oriented.
System Development Life Cycle: Linear or Waterfall Cycle, Linear cycle, phases of SW Development Life Cycle.

System planning and Analysis: Strategies for determining information requirement, Problem definition & Project initiation, Background analysis, Data and Fact Gathering Techniques, Feasibility Studies-Technical, Operational, economic, cost benefit analysis, Interface design tools, user interface evaluations.

Unit-II


Input/Output Forms Design: Requirement of forms design, User Interface Design, Input design, CRT Screen forms design, Output design.

Files organization and Database Design: Designing to Fields, Physical records, Physical files, Database design, Data Structures, Normalization, Introduction to CASE Tools, Features, advantages, and limitations of CASE tools.

System Implementation, Maintenance and documentation, testing, evaluation, maintenance: Activities, Documentation, Document configuration, maintaining a configuration.

Unit-III

Introduction to MIS: Meaning and Role of MIS, Definition of MIS, System Approach to MIS, MIS Organization within a company. Concept of Balanced MIS, effectiveness and efficiency criteria.


Conceptual Design of MIS: Definition of problem, system objectives and system constraints, Analysis of information source, alternative system design and selection optimal system.

Detailed System Design and Implementation: Application of basic design concepts of MIS, Involvement of end-user and role of MIS department and System Analyst, Role of Top Management during design and implementation.

Unit-IV

System Evaluation: System evaluation review and update, Management and control of MIS function, Advanced MIS concept, Pitfalls in MIS development.


Recommended Books

MCA 905: Linux and Shell Programming

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit.
   There will be an internal choice within the unit.

Unit-I

The Operating System: Linux history, Linux features, Linux distributions, Linux’s relationship to Unix, Overview of Linux architecture, Installation, Booting, Login and Shutdown Process, Start up scripts, controlling processes, system processes (an overview), Linux Security, Networking on Linux User Management: Types of users, the powers of Root, managing users (adding and deleting); using the command line, shell scripts and GUI tools.

Unit-II


Unit-III

Filter-The grep family, advanced filters-sed and awk vi editor: General startup of vi editor and it modes, Creating and editing files, features of vi, screen movement, cursor movement insertion, deletion searching, submitting operations, yank put, delete commands reading & writing files, advance editing techniques vim (improved vi).

Shell: meaning and purpose of shell, introduction to types of shell. the command line, standard input and standard output, redirection pipes, filters special characters for searching files and pathnames.

Unit-IV

Shell programming shell Meta character local and global shell variables- interactive shell scripts – shell script arguments- looping and making choice- for loop, case, while and until, shell functions eval.
Networking: Networking tools, E-mail, Remote login, FTP, Network and Server setup LAN, Connection with Internet, Setting-up routers, Proxy Servers, Print-Server, File server, mail Server, Web server and Database server.

Recommended reference/Text Books:

1. Beginning Linux Programming N, Mathew, R. Stones, Wrox, Wiley India Ed.
4. Yshavant P, Kanetkar, Shell Programming
5. Linux System Programming, Robert Love, O” Reilly SPD.
6. Vijay Shekhar; Red hat Linux study guide firewall media.
7. Richard Petersen: The Complete Reference; Linux; TMH

MCA 906: THEORY OF COMPUTATION

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2
   marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit.
   There will be an internal choice within the unit.

UNIT-I

Introduction of automata, computability, and complexity; mathematical notations and terminology;
finding proofs and types of proofs.

Automata and Languages: Regular languages, finite automata, formal definition of a finite automaton,
formal definition of computation, designing finite automata.

UNIT-II

Non-deterministic finite automata: Equivalence of NFAs and DFAs, closure under the regular
operations, Regular Expressions: formal definition of a regular expression, equivalence with finite
automata, nonregular languages: pumping lemma for regular languages.

UNIT-III

Push down Automata and Context free languages: Context free grammars, designing context free
rammar, ambiguity in CFG and its removal, Chomsky normal form push down automata: formal
definition, graphical notations. Languages accepted by PDA, Equivalence of PDA and CFG, Non-
context free languages.

UNIT-IV

Turing Machines and Computability: Formal definition of turing machines with examples, graphical

Dy. Registrar
(Academic)
University of Rajasthan
Decidability, undecidability and reducibility: Decidable languages; decidable problems concerning regular languages and context free languages, the halting problem, undecidable problems, mapping reducibility, decidability of logical theories, turing reducibility.

Text/Reference Books:

Practical Examination

Each practical paper shall be of 4 hours duration on one day and carry 100 marks for the practical examination. The practical examination will involve 3 exercises, each of 20 marks, practical record of 15 marks and viva-voce examination of 25 marks.

MCA 911 : Programming in Java Lab

Practical Lab : Examination : Practical Examination
Lab Exercise based on Theory Paper MCA 901

MCA 912 : . Net Lab

Practical Lab : Examination : Practical Examination
Lab Exercise based on Theory Paper MCA 902.

MCA 913 : Linux OS and Shell Programming Lab

Practical Lab :
Examination : Practical Examination
Lab Exercise based on Theory Paper MCA 905
Syllabus of MCA IV Semester:

Note:
1. Papers MCA X01, MCA X02, MCA X03, MCA X11 and MCA X12 are compulsory (CCC) and Papers MCA X04, MCA X05, Elective-I and MCA X23 are elective (ECC).
2. Continuous assessment (Internal) will be done by the concerned teacher on the basis of test papers, regularity in the class and performance of the student. Maximum marks in continuous assessment of each paper is 100.

MCA X01 Advanced Java Programming & Technology

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I

Introduction to Advance Java Application: Networking with Java- Networking basics, Socket, port, Proxy servers, Internet addressing and URL, java.net-networking classes and interfaces, Implementing TCP/IP based Server and Client. Classes to be covered Socket, Server-Socket, IP Address, URL connections.

Unit-II

Database Application: the JDBC Connectivity Model, Database Programming, Connecting to the Database Types of JDBC Drivers, Writing JDBC applications using select, insert, delete, update; Types of Statement objects (Statement, PreparedStatement and CallableStatement); ResultSet, ResultSetMetaData; Inserting and updating records, Connection Pooling.

Unit-III

Introduction to J2EE: J2EE Overview, Need of J2EE; J2EE Architecture, J2EE APIs, J2EE Containers, Overview of J2ME and its Features-Building MIDlets, User Interface, Event Handling, Screens, List and Forms, J2ME-Overview, MIDlets, Create User Interface, Event Handling with Command Tickers, Screen, Text Box, List and Forms.

Dy. Registrar
(Academic)
University of Rajasthan


Unit-IV

Java Beans: Introduction to Java Bean, Rules for writing a Simple Bean, Java Naming Directory Interface API, Java Naming Directory Interface concept.


Introduction to Struts: (A Web Application Framework) Struts-confi.xml; Understanding MVC architecture; Action Servlet, Action Form, Action Mapping, Action classes.

References /Text Books:


MCA X02 : Advance Database Systems

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I

Transaction Management and Concurrency Control: Transaction-Evaluating Transaction Results, Transaction properties, transaction Management with SQL, the Transaction Log; Concurrency Controls; with Locking Methods; Concurrency Control with Time Stamping Methods-Wait/Die and Wound/Wait Schemes, Concurrency Control with Optimistic Methods, Database Recovery Management.

Unit-II

Introduction to Object-Based Databases: Object Oriented Database concepts, Advantages, OODBMS Features, Groups and Languages; Object Relational Database Concepts and Design.
Database Performance Tuning and Query Optimization: Database Performance and tuning; Statistics; Query Processing; Indexes and Query Optimization; Optimizer Choices; SQL Performance Tuning.

PL/SQL: Concepts of Embedded SQL, Dynamic SQL, SQLJ. PL/SQL Concepts, Elements, Structures, Cursors, Triggers, Database Stored Procedures and SQL/PSM.

Unit-III

Distributed Database Management Systems: Evolution Characteristics, DDBMS Components; Levels of Data and Process Distribution (i.e. SPST, MPSD, MPMD); Distributed Database Transparency Features; DDBMS Design-Data Fragmentation, Data Replication Data Allocation; Client/Server vs. DDBMS.
Introduction to Data Warehousing and Data Mining: Data Warehouse- Decision Support Architectural Styles; Twelve Rules that Define a Data Warehouse; Data Mining Concepts. OLAP-Concepts, Architecture relation, OLAP V/s OLTP, Star V/s Clouding Architecture.

Unit-IV

Database Connectivity and Web Technologies: Database Connectivity – Native SQL Connectivity, JDBC, DAO, and RDO, OLE-DB, ADO.NET, Java Database Connectivity (JDBC); Internet Databases – Web-to-Database Middleware, Server-Side Extensions, Web Server Interfaces, the Web Browser, Client-Side Extensions, Web Application Servers.


Dy. Registrar
(Academic)
University of Rajasthan
Text/Reference Books:
7. Leaon A. Leaon M.; Database Management Systems; Leaon Press.
8. Thomas M. Colnolly, Begg C.E.; Database Systems; Pearson.

MCA X03 : Software Engineering

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I


Unit-II

Information systems Models and Planning : Brief Evolution of Software engineering; Role of Software Engineer, Software Life Cycle ; Types of Software Life Cycle Activities: Typical Documents; Software Life Cycle.
Life Cycle Model, Boehm’s Spiral Model.


Software Planning and Cost Estimation- Project Planning; WBS – Work Break Down Structure; PERT; Software Cost Estimation.

Dy. Registrar
(Academic)
University of Rajasthan
Unit-III

Software Design Methodologies: Software Design Methodologies – Phase of the Design Process, Design Concept, Measuring Cohesion, Measuring Coupling, Requirement Traceability, Structured Analysis and modeling techniques; Process modeling; Logic modeling; Data modeling etc. User Interface and Database Design; Principal of User Interface Design. Object Oriented design process and evaluation.

Validation and Verification- Verification and validation; Software testing- Strategic approach to software testing, System testing, Component testing, Test case design, Critical system validation.

Unit-IV


Reference /Text Books

3. Sommerville Lan; Software Engineering, 8th Ed. Pearson Education

MCA X04: Computer Based Optimization Techniques

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.
Unit-I


Special cases in LPP: alternate optimum solution, an unbounded solution, infeasible Solution, Duality in LPP, Revised Simplex method.

Unit-II

Transportation Problem Definition, methods for finding initial basic feasible solutions – North West corner rule, least cost cell entry method, Vogel’s approximation method, methods for finding optional solution – MODI Method.

Assignment Problems; Definition & concept, solution of an assignment problem for optimum solution – Hungarian Method.

Sequencing: Job – problems for processing N Jobs on 2 machines, processing N jobs on 3 machines, processing N jobs on processing M machines, processing 2 jobs on M machines (Graphic Method).

Unit-III

Inventory Models: What is inventory? Types of Inventories, Inventory Decisions, Cost involved in inventory problems, Controlled & Uncontrolled variables, deterministic inventory control system, concept of an average inventories, concept of economic order quantity (EOQ). (In short Model-I, II and Model III).

Replacement Models; introduction – The replacement problem, replacement of items that deteriorate (with money value), replacement of items that fail completely (Mortality theorem).

Unit-IV


Queuing theory: Introduction queuing system, queering problem, transient & steady states, traffic intensity, distribution of queuing system (Birth & Death Process), Queuing Models – I,II & III.

Recommended Books:

MCA X05 : E-Commerce

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I

Basic Concepts: Introduction, Definition, Objectives, Advantages and disadvantages, Forces driving E-Commerce, Traditional commerce Vs, E-Commerce, E-Commerce opportunities for industries, Growth of E-Commerce.

Electronic Data Interchange : Concepts of EDI and Limitation, Application of EDI, Disadvantages of EDI, EDI model; EDI Implementation, MIME and Value-Added Network, Internet-based EDI.

Unit-II


Electronic Payment Systems: Special features required in payment systems, tapes of E-payment systems, E-Cash, E-cheque, credit card, Smart Card, Electronic purses, e-billing, E-e-Micro payments, point of Sales System (POS) – meaning uses structures.

Unit-III


Unit-IV


Dy. Registrar
(Academic)
University of Rajasthan
Suggested Books:

2. Ravi Kalakota & A.B. Whinston, Frontiers of electronic Commerce Pearson Education,

MCA A01: Artificial Intelligence

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit-I

Basic Concept: Foundations of AI, scope problems and approaches of AI Intelligent agents, reactive, deliberative, goal-driven, utility driven, and learning agents, Artificial Intelligence programming techniques

Problem-solving through Search: forward and backward state space, blind heuristic, problem-reduction A,A*, AO*, minimax, constraint propagation, neural stochastic and evolutionary search algorithms, sample applications.

Unit-II

Knowledge Representation and Reasoning: Ontologies, foundations of knowledge representation and reasoning, representing and reasoning about objects, relations, events, actions, time, and space; predicate logic, situation calculus, description logics, reasoning with defaults, reasoning about knowledge, sample applications.

Planning: planning as search, partial order planning, construction and use of planning graphs.

Unit-III

Representing and Reasoning with Uncertain Knowledge: probability, connection to logic, independence, bypass rule, Bayesian networks, probabilistic inference, sample applications.

Unit-IV

Machine Learning and Knowledge Acquisition: learning from memorization examples, explanation and exploration, learning nearest neighbor, naïve Bayes, and decision tree classifiers, Q-learning for learning action policies applications.

Brief Survey of selected additional topics: Perception, communication, Interaction, and action; multi-agent systems, Sample Applications of AI, student project presentations.

Reference/Text Books:

2. Artificial Intelligence, Rich & Knight, TMH.
3. Introduction to AI & Expert Systems, Patterson, PHI.
4. Neural Networks, Fuzzy Logic & Genetic Algorithms, Rajsekhara, PHI.

MCA A02: Network Management

Theory & Tutorial: 4 hours per week (4 credits)
Examination: Theory Paper - 3 Hours; Max. Marks- 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question no. 1 covering whole syllabus will consist of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit—I


Unit—II


Unit—III


Unit—IV


Reference Books:

MCA A03: Compiler Design

Theory & Tutorial: 4 hours per week (4 credits)
Examination: Theory Paper - 3 Hours; Max. Marks- 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question no. 1 covering whole syllabus will consist of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit — I

Overview of Compilation: Phases of Compilation — Lexical Analysis, Regular Grammar and regular expression for common programming language features, pass and Phases of translation, interpretation, bootstrapping, data structures in compilation — LEX lexical analyzer generator.

Unit—II

Parsing: Context free grammars, Top down parsing — Backtracking, LL (I), recursive descent parsing, Predictive parsing, Pre-processing steps required for predictive parsing. Shift Reduce parsing, LR and LALR parsing. Error recovery in parsing, handling ambiguous grammar, YACC — automatic parser generator.
Unit—III
Symbol Tables Symbol table format, organization for block structures languages, hashin tree structures representation of scope information. Block structures and non block structure storage allocation: static, Runtime stack and heap storage allocation, storage allocation, for arrays, strings and records

Unit—IV

Recommended reference/text books:
2. Holub, Compiler Design in C, P

MCA A04 : Multimedia Systems

Theory & Tutorial : 4 hours per week (4 credits)
Examination: Theory Paper - 3 Hours; Max. Marks- 100
Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question no. I covering whole syllabus will consist of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit.
   There will be an internal choice within the unit.

Unit—I

Unit—II
Compression and Decompression: Type of Compressions, Binary Image Compression Schemes, Image Compression, Video image Compression, Audio Compression, Lossless Compression Algorithms, Lossy Compression Algorithms, Image Compression Standards, Basic Video Compression Techniques, MPEG Video Coding I - MPEG-1 and 2, MPEG Video Coding II - MPEG-4, DVI and Beyond.

Unit—III

Dy. Registrar
(Academic)

Unit — IV

Trends in Multimedia — Multimedia in Wireless Networks; Content-Based Retrieval in Digital Libraries; Multimedia Storage Systems, User Interface; Multimedia Synchronization, Multimedia Presentation and Web Technologies (Documents, Hypertext, MHEG), Multimedia Databases, P2P Multimedia Systems.

Multimedia Applications: Media Preparation, Media Composition, Image Processing & Image Reorganization, Animation, Media Integration, Media Communication, Media Consumption; Education & Training, Media Entertainment and Full Motion Digital Video Applications.

Reference/Text Books:

1. Prabhat K. Adrleigh, Kiran Thakrar; Multimedia System Design; P1-It
2. Ralph Steimmetz, Klara Nahrstedt; Multimedia: Computing, Communication & Applications; Pearson Education;

Practical Examination

Each practical paper shall be of 4 hours duration on one day and carry 100 marks for the practical examination. The practical examination will involve 3 exercises, each of 20 marks, practical record of 15 marks and viva-voce examination of 25 marks.

MCA X11: Advanced Java Lab
Practical Lab:
Examination: Practical Examination
Lab Exercise based on Theory paper MCA X01

MCA X12: Advanced DBMS Lab
Practical Lab:
Examination: Practical Examination
Lab Exercise based on Theory paper MCA X02.

MCA X23: Mini Project
Practical Lab:
Examination: Practical Examination

Dy. Registrar
(Academic)
University of Rajasthan

12
Syllabus of MCA V Semester 2018-19

Note:
1. Papers MCA Y01, MCA Y02, MCA Y03, MCA Y11 and MCA Y22 are compulsory (CCC) and Papers MCA Y04, Elective-II, Elective-III and MCA Y23 are elective (ECC).
2. Continuous assessment (Internal) will be done by the concerned teacher on the basis of test papers, regularity in the class and performance of the student. Maximum marks in continuous assessment of each paper is 100.

MCA Y01: Information Security And Cryptography

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100
Note: 1. Candidate has to attempt five questions in all. All questions carry equal marks.
4. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
5. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit I

Introduction to Computer Security and Cryptography, Security Attacks, Security Services and Mechanism.

Unit II


Unit III


Unit IV


Reference Books:
2. Atul Kahate; Cryptography and network Security; Tata McgrawHill.
3. V.K. Pachghare; Cryptography and Information Security; PHI.

MCA Y02: Analysis and Design of Algorithms

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note: 1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit I


Unit II

Greedy Methods: General method, Knapsack Problem, ActivitySele
problem, Minimum Cost Spanning Tree, Single Source Shortest Path.
Dynamic Programming: General method, Multistage graphs, All P:
shortest Path, Optimal Binary search trees, 0/1 Knapsack, Travel Salesman Problem, Flow Shop Scheduling.

Unit III

Advanced data structure: B-trees, Fibonacci Heaps, Data Structure for Disjoint Sets.
Backtracking: General method, 8 Queens Problem, Sum of Subsets, Graph Colouring, Hamiltonian cycles, Knapsack Problem.

Unit IV

Branch and Bound: 0/1 Knapsack Problem, Travel Salesman Problem.
Parallel Models: Basic concepts, Performance measures, Parallel algorithms, Parallel Complexity, analysis of Parallel Addition, Multiplications and Divisions, Parallel Evaluation of Arithmetic expressions.

Reference Books:
1. Thomas H Cormen, C.E. Leiserson, R.L Rivest, C. Stein; Introduction to Algorithms, 3 ed; PHI.
MCA Y03: SIMULATION & MODELING

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit I

System Models: Concept, Environment, Continues and Discrete systems, Types of Models; Subsystems, System Analysis, System design; System Simulation Technique, Monte Carlo method, Types of System Simulation.

Unit II

Continuous System Simulation – Continuous System Models, Method..., Digital-Analog Simulators and Feedback systems.

Unit III

Probability concepts in simulation: Stochastic variables and probability functions; Discrete system simulation; fixed time step v/s event-to-event model, Generation of Random numbers, Monte Carlo Computation V/S Stochastic simulation.
Simulation of Queuing system, Simulation of single and two server queue, Network Model of a project.

Unit IV

Introduction to GPSS- Elements, Events; Control Statements , Programs.
Case study: Simulation of an autopilot, Telephone system, Inventory system & Supermarket.

References:

1. G.Gordon “System Simulation” PHI.
2. Narsingh Deo “System Simulation with Digital Computers” PHI.

Dy. Registrar
(Academic)
University of Rajasthan
JAIPUR
MCA Y04: Wireless Technology

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit I


Unit II

Wireless Network Planning And Operation: Frequencies Management, Channel assignments, Frequency reuse, System Capacity & its improvement, Handoffs & its types, roaming, Co-Channel & Adjacent Channel Interference.

Digital Cellular Networks: GSM Architecture & Interfaces, Signal Processing in GSM, Frame Structure of GSM, Channels used in GSM.

Unit III

Wireless LAN Technology: Overview, WLAN Technologies, Infrared LANs, Spread Spectrum LANsNarrowband, Microwave LANsIEEE 802.11- Architecture, Protocols, MAC layer, MAC frame, MAC Management.


Unit IV

vMobile Data Networks: Introduction, Data oriented CDPD Networks, GPRS.

Text/ Reference Books:

- Mobile communication Engg- Lee W.C.Y
- Wireless Communication, Principles & Practice-T.S.Rappaport
- Mobile Communication, Pearson Education- Schiller
- Wireless Communication & Networking-William Stallling
- Mobile communication -Rampantly
- Principles of Wireless Networks-Kaveshpahlavan&P.Krishna Murthy
MCA B01: Bio-Informatics

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper - 3 hours; Max. Marks - 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit.
   There will be an internal choice within the unit.

Unit I

Introduction to Bioinformatics: Definition and History of Bioinformatics, Internet and Bio-Informatics, Introduction to Data Mining, Applications of Data Mining to Bio-informatics, Problems and Applications of Bio-informatics.

Unit II


Unit III


Unit IV

Markov chains and applications: Machine Learning Methods, Hidden Markov models, Applications of HMM in gene identification and Profiles HMMs, Neural Networks and Support Vector machines

Text/Reference Books:

3. Mont, D.W., Bioinformatics: Sequence and Genome Analysis.
10. Patterson, B.K., Techniques in Quantification and Localization of Gene Expression.

MCA B02 : Geo-Informatics

Theory & Tutorial : 4 hours per week (4 Credits)
Examination : Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit.
   There will be an internal choice within the unit.

Unit I

Basic concepts about Special information, Definition, Historical evaluation and need for spatially based resource information system, objectives of GIS-Manual v/s automated GIS. Geo-informatics technologies and the technologies used in Geographical Studies; Geoinformatics-Spatial and Non – Spatial data Management.

Unit II

Data structure types of data structure, Raster and Vector formats, advantages and disadvantage of various data structures and data formats. Geo Spatial DBMS.
Data input: Data Pre-processing, methods of data capture, digitization and scanning methods, commonly used map projections and ellipsoids.

Unit III

The format of GIS - Handling digital Geographical Information Data- Analysis of single data planes in Raster format- Analysis of multiple data planes in Rater format- Uses of topographic data in Raster format- Data structures for thematic maps.

Unit IV

Text/Reference Books:


MCA B03: ERP Systems

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit I

Introduction: Enterprise wide information system, Custom built and packaged approaches, Needs and Evolution of ERP System, Common myths and evolving realities.
ERP Technologies: ERP and Related Technologies, Business Process Reengineering and Information Technology, Supply Chain Management, Relevance to Data Warehousing, Data Mining and OLAP, ERP Drivers, Decision support system.

Unit II

ERP System: ERP Domain, ERP Benefits classification, Present global and Indian market scenario, milestones and pitfalls, Forecast, Market players and profiles, Evaluation criterion for ERP products.
ERP Life Cycle: Adoption decision, Acquisition, Implementation, Use & Maintenance, Evaluation and Retirement phases, ERP Modules.

Unit III

ERP Framework: Framework for evaluating ERP, Analytical Hierarchy Processes (AHP), Applications of AHP in evaluating ERP, Selection of Weights, Role of consultants, vendors and users
in ERP implementation; Implementation strategies, ERP Customization, ERP-A manufacturing Perspective.


Unit IV

Analysis of ERP Implementations: Technologies in ERP System and Extended ERP, Case Studies Development and Analysis of ERP Implementations in focusing the various issues discussed in above units through Soft System approaches or qualitative Analysis tools, Learning and Emerging Issues, ERP and E-Commerce.

Concept of E-governance: Concept, E-Governance frame work, area of application like public sector, service industry.

Reference Books:
1. Lexis Leon; Enterprise Resource Planning; TMH
2. Brady, Manu, Wegner; Enterprise Resource Planning; TMH
4. Dimpi Srivastava, Arti batra; ERP Systems; I K International Publishing House

MCA B04: Embedded Systems

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit I

Introduction: An Overview of Embedded system, Requirement, Challenges issues, and trends software development
Applications of Embedded Systems: Application market segments, control system and industrial automation, Data communication, Networked Information Appliances, Telecommunications.

Unit II

Hardware Architecture: Processor, Memory, Latches and Buffers, ADC and DAC, Application specific control, Display units, Keypads, DSP.
Microcontroller and their applications, Communication interfaces: Serial interface, IEEE 1394, ISB Infra red, Ethernet and PCI bus.

Dy. Registrar (Academic)

Rajasthan
Unit III

Embedded system development process: requirement, system architecture, opening system and processes: Development platform and tools, HLL support Cross compilers, Linux and Windows CE based development Tools. Mobile/handheld systems.

Unit IV

Basic idea of embedded system applications: mobile networks, GPS, Real time system, Database application, Networked and JAVA – enabled information appliances, Mobile JAVA applications.

Reference Books:
5. Frank Vahid, Tony Givargis; Embedded System Design, 20006; John Wiley.
6. David E. Simon; An Embedded Software Primer, 4th 2007; Pearson Education.
8. Making Embedded Systems, Elecia White, O'Rielly

Elective-3 (Any one)

MCA C01: Mobile Communication & Networks

Theory & Tutorial : 4 hours per week (4 Credits)
Examination : Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit.
   There will be an internal choice within the unit.

Unit I

Wireless communication : Cellular systems- Frequency Management and Channel Assignment- Types of Handoff and their characteristics, dropped call rates & their evaluation; MAC, SDMA, FDMA, TDMA, CDMA, Cellular Wireless Networks.

Unit II


Unit III

Mobile Communication Systems: GSM-Architecture-Location Tracking and Call setup, Mobility Management, Handover-Security; GSM & SMS, International Roaming for GSM, Call Recording

Dy. Registrar
(Academic)
Director of Rajasthan

Unit IV


Application Layer :WAP Model, Mobile Location based services, WAP Gateway, WAP protocols, WAPuser Agent Profile, Caching Model, Wireless Bearers for WAP, WML – WMLScripts- WTA-iMode- SyncML.

TEXT/ REFERENCES BOOKS:


MCA C02 : Object Oriented Software Engineering

Theory & Tutorial : 4 hours per week (4 Credits)
Examination : Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit I

Unit II


Unit III


Unit IV

Advanced Topics in Software Engineering : Software Reuse, Component based Software Engineering and Development. Classifying and Retrieving Components. Introduction to Distributed Software Engineering, Service Oriented Architecture, Aspect Oriented Software Engineering

Reference/Text Books :
1. Designing Flexible Object Oriented Systems with UML. By Charls Richter Techmedia.
2. UML users guide by Booch, Rumbaugh, Jacobson –Addison Wesley
3. Object Oriented Modeling and Design by Rumbaugh.
4. Object Oriented Analysis & Design – Practical Applications By Booch – Addison Wesley.

MCA C03 : Web Information System

Theory & Tutorial : 4 hours per week ( 4 Credits)
Examination : Theory Paper – 3 hours; Max. Marks – 100

Note : 1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit I

Internet foundations: Fundamentals of network and hardware architecture for the Internet. Network protocols for the web, HTTP, DNS, and DHCP, client – server and peer- to- peer architectures.

Introduction to Web designing: Hypertext Markup Language (HTML), Cascading Style Sheet(CSS), forms. and tables. XML and JavaScript.

Unit II

Advanced Web Application Development Development of web application using JDBC, Triggers, stored procedures, Use of Oracle DBMS through JDBC, Java servelets, Java Server Pages, and Java
Database Connectivity (JDBC). Client-side scripting with JavaScript, Packaging and deployment of web applications.

Unit III


Unit IV

Site Maps and Indexes: Site Map, Designing Site Map showing Scope and Destination Choice, Producing Site Map. Benefits of Geographical Navigation: Site Indexes, Tours.


Reference/Text Books:
2. Jamel Jawarski, “Java 2 Unlimited”.
3. Allumaraju, “Professional Java Server Programming”.

MCA C04: Pattern Recognition Systems

Theory & Tutorial: 4 hours per week (4 Credits)
Examination: Theory Paper – 3 hours; Max. Marks – 100

Note:
1. Candidate has to attempt five questions in all. All questions carry equal marks.
2. Question No. 1 covering whole syllabus will consists of 10 short answer questions carrying 2 marks each.
3. Question No. 2 to 5, each of 20 marks, will be framed by taking one question from each unit. There will be an internal choice within the unit.

Unit I


Unit II

Linear and quadratic discriminants, Fisher discriminant Sufficient statistics, coping with missing or noisy features. Template-based recognition, eigenvector analysis, feature extraction, Training methods. Maximum likelihood and Bayesian parameter estimation, Linear discriminant/Perception learning.
Unit III

Optimization by gradient descent, SVM, k-nearest-neighbor classification, Non-parametric classification, density estimation, parzen estimation, Unsupervised learning, clustering, vector quantization, k-means.

Unit IV

Mixture modeling, optimization by Expectation-Maximization, Hidden Markov models, Viterbi algorithm, Baum-Welch algorithm.
Linear dynamical system; Kalman filtering and smoothing, Bayesian networks, independence diagrams, Decision trees, Multi-layer Perceptrons.

Reference Books:
1. Richard O. Duda, Peter E. Hart and David G. Stork, "Pattern Classification" Wiley.

Practical Examination

Each practical paper shall be of 4 hours duration on one day and carry 100 marks for the practical examination. The practical examination will involve 3 exercises, each of 20 marks, practical record of 15 marks and viva-voce examination of 25 marks.

MCA Y11 : ADA Lab

Practical Lab : 6 Hours per Week (4 Credits)
Examination : Practical examination : 4 Hours
Max. Marks : 100

Lab Exercise based on Theory Paper MCA Y02

MCA Y22: Mini Project

Practical Lab : 6 Hours per Week (4 Credits)
Examination : Practical examination : 4 Hours
Max. Marks : 100

Technology : Use .NET/JAVA/JSP/PHP/Android/Web Technology.

MCA Y23: Seminar

Practical Lab : 6 Hours per Week (4 Credits)
Examination : Practical examination : 4 Hours
Max. Marks : 100

Each candidate have to give a Seminar (Power Point Presentation and its Report) on any topic related to latest IT/Computer Sc. /Mobile Technology in the presence of Assessment Committee of Internal and external examiners.
Unit III

Optimization by gradient descent, SVM, k-nearest-neighbor classification, Non-parametric classification, density estimation, parzen estimation, Unsupervised learning, clustering, vector quantization, k-means.

Unit IV

Mixture modeling, optimization by Expectation-Maximization, Hidden Markov models, Viterbi algorithm, Baum-Welch algorithm.
Linear dynamical system; Kalman filtering and smoothing, Bayesian networks, independence diagrams, Decision trees, Multi-layer Perceptrons.

Reference Books:
1. Richard O. Duda, Peter E. Hart and David G. Sotrk, "Pattern Classification" Wiley.

Practical Examination

Each practical paper shall be of 4 hours duration on one day and carry 100 marks for the practical examination. The practical examination will involve 3 exercises, each of 20 marks, practical record of 15 marks and viva-voce examination of 25 marks.

MCA Y11: ADA Lab

Practical Lab: 6 Hours per Week (4 Credits)
Examination: Practical examination: 4 Hours
Max. Marks: 100

Lab Exercise based on Theory Paper MCA Y02

MCA Y22: Mini Project

Practical Lab: 6 Hours per Week (4 Credits)
Examination: Practical examination: 4 Hours
Max. Marks: 100

Technology: Use .NET/JAVA/JSP/PHP/Android/Web Technology.

MCA Y23: Seminar

Practical Lab: 6 Hours per Week (4 Credits)
Examination: Practical examination: 4 Hours
Max. Marks: 100

Each candidate have to give a Seminar (Power Point Presentation and its Report) on any topic related to latest IT/Computer Sc. /Mobile Technology in the presence of Assessment Committee of Internal and external examiners.
Unit III

Optimization by gradient descent, SVM, k-nearest-neighbor classification, Non-parametric classification, density estimation, parzen estimation, Unsupervised learning, clustering, vector quantization, k-means.

Unit IV

Mixture modeling, optimization by Expectation-Maximization, Hidden Markov models, Viterbi algorithm, Baum-Welch algorithm.
Linear dynamical system; Kalman filtering and smoothing, Bayesian networks, independence diagrams, Decision trees, Multi-layer Perceptrons.

Reference Books:
1. Richard O. Duda, Peter E. Hart and David G. Sotrk,”Pattern Classification” Wiley.

Practical Examination

Each practical paper shall be of 4 hours duration on one day and carry 100 marks for the practical examination. The practical examination will involve 3 exercises, each of 20 marks, practical record of 15 marks and viva-voce examination of 25 marks.

MCA Y11 : ADA Lab

Practical Lab : 6 Hours per Week (4 Credits)
Examination : Practical examination : 4 Hours
Max. Marks : 100

Lab Exercise based on Theory Paper MCA Y02

MCA Y22: Mini Project

Practical Lab : 6 Hours per Week (4 Credits)
Examination : Practical examination : 4 Hours
Max. Marks : 100

Technology : Use .NET/JAVA/JSP/PHP/Android/Web Technology.

MCA Y23: Seminar

Practical Lab : 6 Hours per Week (4 Credits)
Examination : Practical examination : 4 Hours
Max. Marks : 100

Each candidate have to give a Seminar (Power Point Presentation and its Report) on any topic related to latest IT/Computer Sc./Mobile Technology in the presence of Assessment Committee of Internal and external examiners.